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ABSTRACT 

Variability is the heterogeneity of values within a population.   Uncertainty refers to lack 

of knowledge regarding the true value of a quantity.  Mixture distributions have the potential to 

improve the goodness of fit to datasets not adequately described by a single parametric 

distribution.  Uncertainty due to random sampling error in statistics of interests can be estimated 

based upon bootstrap simulation.  In order to evaluate the robustness of using mixture 

distribution as basis for estimating both variability and uncertainty, 108 synthetic datasets 

generated from selected population mixture lognormal distributions were investigated, and 

properties of variability and uncertainty estimates were evaluated with respect to variation in 

sample size, mixing weight and separation between components of mixtures.  Furthermore, 

mixture distributions were compared with single component distributions. Findings include: (1) 

mixing weight influences the stability of variability and uncertainty estimates; (2) bootstrap 

simulation results tend to be more stable for larger sample size; (3) when two components are 

well separated, the stability of bootstrap simulation is improved; however, a larger degree of 

uncertainty arises regarding the percentiles coinciding with the separated region; (4) when two 

components are not well separated, a single distribution may often be a better choice because it 

has fewer parameters and better numerical stability; and (5) dependencies exist in sampling 

distributions of parameters of mixtures and are influenced by the amount of separation between 

the components.  An emission factor case study based upon NOx emissions from coal-fired 

tangential boilers is used to illustrate the application of the approach.    

 
KEY WORDS:  Variability; uncertainty; mixture distributions; parameter estimation; bootstrap 
simulation 
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1. 0 INTRODUCTION 

Variability is the heterogeneity of values with respect to different times, locations, or 

members of a population.  Uncertainty, also referred to as fundamental or epistemic uncertainty, 

arises due to lack of knowledge regarding the true value of a quantity. (1, 2, 3, 4) Both variability 

and uncertainty may be quantified using probability distributions.  Kaplan and Garrick (5) suggest 

that uncertainty regarding variability may be viewed in terms of probability regarding 

frequencies.  Morgan and Henrion (6) and Frey (7) suggest that variability is described by a 

frequency distribution, and that uncertainty is described by probability distributions.  

Probabilistic methods are being developed to quantitatively describe both variability and 

uncertainty. (8, 9, 10, 11, 12, 13) The recognition of the distinction between variability and uncertainty, 

especially with regard to potentially sensitive or highly exposed subpopulations in risk 

assessment, is growing. (14) There is a growing track record of the use of quantitative methods for 

characterizing variability and uncertainty in various applications including human health or 

ecological risk assessment and probabilistic emission estimation for various emission sources, 

including power plants, non-road mobile sources, and natural gas-fired engines.(11, 12, 15, 16, 17, 18) 

A widely accepted method for uncertainty analysis is to identify inputs to a model that 

are known to have uncertainties, and to quantify the uncertainties in each input using a 

probability distribution model.(19, 20, 21) Commonly used probability distribution models include 

empirical and parametric distributions.  In contrast to empirical distributions, parametric 

distributions allow for interpolation within the range of observed data and for extrapolation 

beyond the range of observed data to represent the tails of the distribution. The choice of 

empirical versus parametric distributions is not inherently a matter of right or wrong, but more a 

matter of preference of the analyst.(22) In practice, a parametric distribution is often used since it 
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is a compact means for representing variability in a quantity.   

Single component distribution models such as the normal or lognormal distribution are 

often used to describe variability or uncertainty in a quantity.  However, single component 

distributions might not well describe the variation in a quantity for some cases, such as when the 

data are actually based upon a mixture of two subpopulations.  The use of single component 

distributions that are poor fits to data could lead to bias in variability and uncertainty analysis.  A 

possible alternative is to use a finite mixture of distributions.  A mixture distribution is 

comprised of two or more component distributions that are each weighted.  Typically, a mixture 

distribution will produce a better fit to a data set than a single component distribution, because 

there are more parameters in the mixture distributions.   

Mixture models have been used in the physical, chemical, biological and social science 

fields.  For example, Harris (23) applied mixtures of geometric and negative binomial distributions 

to modeling crime and justice data.  Kanji (24) described wind shear data using mixture normal 

distributions.  Wedel et al.(25) utilized a finite mixture of Possison distributions to model the data 

on customer purchases of books offered through direct mail.  In human exposure and risk 

assessment, Burmaster and Wilson(26) used mixture lognormal models to re-analyze data sets 

collected by the U.S. EPA for the concentration of Radon222 in drinking water supplied from 

ground water, and found that the mixture model yielded an improved fit to the data not 

achievable with any single parameter distributions.   

Frey and Rhodes (8, 9) presented a two-dimensional probabilistic approach for 

simultaneously quantifying variability and uncertainty based on single distributions featuring the 

use of bootstrap simulation.  This general approach is adopted here.  However, the approach is 

extended to include mixture distributions. 
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Because a mixture distribution has a more complicated mathematical form and more 

parameters than a single component distribution, the processes of parameter estimation and 

quantification of variability and uncertainty are more challenging.  These challenges motivate the 

following key questions that are addressed by this paper: 

1. How should the parameters of mixture distributions be estimated? 

2. How should random numbers be generated from mixture distributions for 

purposes of bootstrap sampling? 

3. How should confidence intervals be developed for statistics estimated from a 

mixture distribution? 

4. How robust are results based upon mixture distributions with respect to sample 

size, mixing weight, and degree of separation between components of mixtures? 

5. Under what circumstance is a single component distribution preferred over a 

mixture distribution? 

6. What is the nature of the dependencies among the parameters of a mixture 

distribution? 

This paper answers these six questions.  In addition, the approach for using mixture 

distributions and bootstrap simulation is illustrated with a case study of an empirical dataset.  

This paper focuses on mixture lognormal distributions with two components since a lognormal 

distribution describes random variability resulting from multiplicative processes and often well 

describes the concentration of a chemical in the environment (26, 27).  However, the methods 

introduced here can be extended to other components and to mixture distributions with more than 

two components. 
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2. 0 METHODOLOGY 

In this section, methods for fitting mixture distributions to data and methods for 

quantifying uncertainty in statistics estimated based upon mixture distributions are presented. 

2.1 Definition of Mixture Distribution 

According to the definition from Titterington et al. (28), a mixture model for a random 

variable or vector, X, is represented by a probability density function: 

)x(fw)x(fw)x(fw)x(f kk2211 +⋅⋅⋅++=      (1) 

With   
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Where,   

             f(x)   =  Probability density function for  the mixture model  

 fk(x)  =  Probability density function (PDF) for a component of the mixture. 

             wk     =  The mixing weight 

              k      =   number of components in the mixture 

A mixture model with two components is expressed as: 
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Where, 

iα  = The mean of ln(x) in the ith component of a mixture model 
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 iβ  = The standard deviation of ln(x) in the ith component of a mixture model 

2.2  Parameter Estimation of Mixture Distributions 

Many methods have been devised and used for estimating the parameters of a mixture 

distributions including, among others, Pearson’s Method of Matching Moments (MoMM), 

informal graphical techniques and Maximum Likelihood estimation (MLE) approaches. (29) Until 

the use of computers became widespread in the 1960’s, only fairly simple mixture density 

estimation problems were studied.  MoMM has long been disfavored because of requirement that 

at least some useful statistics be known when estimating the parameters in a mixture models.(29, 

30)  However, this requirement cannot be met in many practical cases. 

Prior to the widespread availability of computing resources, Cassie suggested graphical 

procedures employing probability paper as an alternative to moment estimates. (31) These 

graphical procedures work best on mixture populations that are well separated in the sense that 

each component has an associated region in which the presence of the other components can be 

ignored. (29, 30) 

With the advent of high-speed computers, interest turned to likelihood estimation of the 

parameters in a mixture distribution.  The general idea behind MLE is to choose values of the 

parameters of the fitted mixture distribution so that the likelihood that the observed data is a 

sample from the fitted distribution is maximized. (32) 

MLE is selected as the preferred method for estimating parameters in a mixture 

distribution due to its relative practicality and generality. In MLE, the likelihood function is 

calculated by evaluating the probability density function for each observed data point 

conditioned on assumed parameter values and multiplying the results. (32) Alternatively, and 
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more commonly, the log-transformed version of the likelihood function is used.  The MLE 

parameter estimates can be obtained by finding the maximum of a log-likelihood function 

through the use of a numerical analysis approach since analytical solutions are often not 

available for mixture distributions.   

The log-likelihood function of a univariate mixture distribution is given by: 

∑ ∑∑
= ==
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            n         =  the number of data points 

            k         =  the number of components in a mixture distribution       

            L,        =  Log-likelihood function 

          jj ,βα   =  the parameters in the jth component in a mixture distribution 

There are alternative approaches that can be used to find the maximum of Equation (4) 

and, hence, obtain the parameter estimates of a mixture distribution.  One is the Expectation-

Maximization (EM) algorithm.(33)  The EM algorithm has the advantage of reliable global 

convergence, low cost per iteration, economy of storage and ease of programming; however, its 

convergence can be very slow in simple problems that are often encountered in practice,(29) and 

its results are strongly dependent upon the initial guesses assumed for the parameters.(30)  A 

second approach is the Newton-Raphson iterative scheme.  This scheme requires calculation of 

the inversion of the matrix of second derivatives of the log-likelihood function, which is 

complicated and must be done separately for each combination of parametric distributions 

assumed in a mixture (e.g., normal, lognormal, gamma, Weibull) thereby limiting general 
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applicability.(29, 30)  A third approach preferred here because of its computational efficiency is to 

use nonlinear optimization methods to directly maximize the log-likelihood function. 

The optimization problem for a mixture of two lognormal distributions is:  

[ ]
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0,

1w0toSubject
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 This optimization problem is multidimensional and constrained.  A variety of methods 

are available to solve such problems.  Although an algorithm which can deal with a constrained 

problem has theoretical appeal, in practice, unconstrained methods are often easier to implement 

and provide robust results.  Optimal results are checked against the constrained conditions.  

Those results that cannot meet the constraints can be abandoned and replaced during bootstrap 

simulation; however, this phenomenon occurs rarely in most cases as described later.  Common 

unconstrained methods include the downhill simplex method; the direction-set method, of which 

Powell’s method is the prototype; and others.(34)  Powell’s method is employed because it can 

provide reasonable estimation results and it is relatively easy to implement.   

2.3  Quantification of Uncertainty in Statistics of Interests Using Mixture Distribution 

Uncertainty in a statistic attributable to random sampling error can be represented by a 

sampling distribution.(20) Sampling distributions are used to estimate confidence intervals for the 

parameters of a distribution.  A confidence interval for a statistic is a measure of the lack of 

knowledge regarding the value of the statistic.  There are a variety of methods for characterizing 

uncertainty in statistics such as the mean or standard deviation, including analytical solutions and 

numerical simulations.  Analytical solutions are available for cases in which the underlying 
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distribution for a data set is normal or for which the variance is small enough and/or the sample 

size for a data set is large enough (e.g., >30).  If the underlying population distribution is not 

normal and the sample size for a data set is small, analytical methods based upon normality may 

lead to significant errors in the estimation of confidence intervals.  Therefore, there is a need for 

a more flexible approach for estimating sampling distributions and confidence intervals when 

mixture distributions are used.  

Bootstrap simulation, introduced by Efron in 1979, is a numerical technique originally 

developed for the purpose of estimating confidence intervals.(35) This method can provide 

solutions in situations where exact analytical solutions may be unavailable and in which 

approximate analytical solutions are inadequate.(20) Bootstrap simulation has been widely used in 

the prediction of confidence intervals for a variety of statistics.(8, 9, 20, 36, 37, 38)   

In using bootstrap simulation, there are two major aspects.  The first is a procedure for 

generating random samples from an assumed population distribution, and the second is the 

method of forming confidence intervals for statistics estimated from the random samples.(35, 36)   

While there are standard numerical methods for drawing random samples from single 

component parametric distributions,(6, 20) the methods for drawing random samples from mixture 

distributions are more complicated in the context of bootstrap simulation.  Although it is possible 

to obtain a single random sample from a mixture distribution by sampling from a weighted 

proportion of single component distributions, one of the objectives in bootstrap simulation is to 

develop confidence intervals for all statistics, including the component weights.  Therefore, it is 

necessary to develop an estimate of the assumed population distribution in a manner that allows 

for the weight to vary randomly from one bootstrap sample to the next.  For this purpose, an 

empirical distribution is used to represent the assumed population distribution for the mixture.   
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As shown in Figure 1, the first step in developing the assumed population distribution is 

to generate a large number of random samples using standard simulation methods.  For example, 

suppose there is a mixture of two lognormal components, one with a weight of 40 percent and 

the other with a weight of 60 percent.  In order to develop a stable and precise estimate of the 

cumulative distribution function (CDF) of this mixture, one may simulate 2,000 or more random 

values. Thus, on average 800 values would be simulated from the first component and 1,200 

values would be simulated from the second component.  These values would be rank-ordered to 

describe an empirical cumulative distribution function of the mixture distribution.   

Once an empirical representation of the assumed population mixture distribution is 

available, it is then possible to randomly sample from it to generate bootstrap samples, as 

indicated in Figure 1.  From each bootstrap sample, the bootstrap replicates of the component 

parameter values and of the weight may be estimated.  For each bootstrap replication of the 

distribution parameters, the mean and other statistics may be simulated. 

There are several methods for forming bootstrap confidence intervals such as the 

percentile, hybrid, bootstrap-t, and Efron’s BCa methods.
(35, 37)  The percentile method is perhaps 

the most frequently used in practice.(35, 38) The intervals from this method are the simplest to 

obtain, use and explain.  The Hybrid method is justified by asymptotic results for the bootstrap in 

complicated models.(35, 38)  The bootstrap-t and the BCa intervals are comparable in that both 

have been demonstrated theoretically to be “second-order correct” for one-sided intervals in 

some relatively simple situations.(35, 38)  The BCa method was recommended for general use, 

especially for nonparametric problems;(35)  however, the process for estimating BCa confidence 

intervals is complicated and the computation burden is heavy.(38)  Thus it appears that it is seldom 

used in actual applications. Therefore, for simplicity and because it is the most widely used 
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method in practice, the percentile method is used here to construct bootstrap confidence 

intervals.   

3.0 PARAMETRIC STUDY OF VARIABILITY AND UNCERTAINTY BASED UPON 
MIXTURE DISTRIBUTIONS 

In order to answer the fourth motivating question, synthetic datasets with different 

sample sizes, mixing weights and magnitudes of separation between components were generated 

from mixture lognormal distributions with two components.  The assumed population mixture 

lognormal distributions are described in Table 1. 

Twelve groups of population mixture distributions were evaluated.  The groups differ in 

terms of the variability of each component and the relative degree of separation of the means of 

the two components compared to the variability.  For example, when µ1=1.0, σ1=0.5, µ2=1.5, 

σ2=0.5, the means of the two components are separated by only one standard deviation and 

therefore are said not to be well separated.   However, when µ1=1.0, σ1=0.5, µ2=6.0, σ2=0.5, the 

means of the two components are separated by 10 standard deviations and are said to be well 

separated.   

To investigate the effect of variation of mixing weights and sample sizes, first component 

weights of 0.1, 0.3 and 0.5, and sample sizes of 25, 50 and 100 were studied parametrically for 

each group.  Therefore, there are 9 synthetic datasets for each of the 12 groups, for a total of 108 

synthetic datasets.  

3.1 Evaluation of Robustness of Bootstrap Simulation Results  

To illustrate the results obtained from the parametric study of different variability in 

components, separation between components, mixing weights and sample sizes, a series of 

results based upon Groups 5, 6, 7 and 8 are displayed graphically in Figures 2, 3, 4 and 5 for 1, 2, 

4 and 10 standard deviation separation between the means of the two components, respectively.  
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Each component in all four figures has a standard deviation of 0.5.  The variation in sample size 

and weight is illustrated by the panels of each figure.  Each panel displays the assumed 

population distribution and the 95 percent confidence interval on the CDF.  The later was 

obtained based upon bootstrap simulation. 

Figure 2, which represents a situation with relatively little separation between 

components, illustrates that the MLE optimization method works better for larger sample size 

and for large weights for both components.   Conversely, the method failed to provide parameter 

estimates for small sample sizes and/or small weights for the first component. In situation where 

parameter estimation fails for a bootstrap sample, the bootstrap sample is abandoned and 

replaced with a new one.  If this problem occurs ten times, the bootstrap simulation is judged to 

fail and no results are reported.  For the successful cases it is clear that the 95 percent confidence 

intervals become narrower for a given component weight as the sample size increases.  It is 

difficult to visually detect much difference in the population distribution or the confidence 

intervals when comparing different weights for the same sample size.  

Figure 3, 4 and 5 illustrate that the parameter estimation method becomes more robust as 

the degree of separation increases, but that there are still combinations of small sample size (i.e., 

25 and 50) for the smallest weight considered for which the bootstrap results fail.  However, 

bootstrap results were obtained for cases of n=25 and w=0.3, and n=100 and w=0.1, which failed 

for the smallest separation among components as shown in Figure 2.  In general, the width of the 

confidence intervals decreases as sample size increases.  Although some separation of 

components is evident in Figure 3, the separation is highly pronounced in Figures 4 and 5, as 

revealed by the well-defined inflection points. The inflection points occur at a cumulative 

probability equal to the corresponding weight.  For example, as shown in Figure 5, the inflection 
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point for a mixture distribution with a weight of 0.5 occurs near the median of the CDF. 

As the degree of separation increases, the range of uncertainty for percentiles of the 

distribution near the inflection point increases.  Because the weight parameter is itself a random 

variable, there is uncertainty regarding the inflection point, leading to widening of the confidence 

intervals around this point.  Thus, even in Figure 3 where the separation is relatively small, there 

is a noticeable “bulge” in the confidence intervals near the inflection point, especially for the 

small weights.  

The results not graphically shown in this paper for case studies with σ1=σ2=0.1 and 

σ1=σ2=1.0, yielded similar characteristics to the results with σ1=σ2=0.5 shown here.     

4.0 COMPARISONS BETWEEN SINGLE DISTRIBUTIONS AND MIXTURE 
DISTRIBUTIONS 

For comparison purposes, single lognormal distributions were fit to the datasets generated 

from the specified mixture population distributions listed in Table 1.  Selected results comparing 

the 95 confidence intervals of the CDF of a single lognormal distribution to the population 

mixture distribution are shown in Figure 6 and 7 for cases of one and two standard deviation 

separation between components of the population mixture, respectively.   

Figure 6 illustrates that a single component distribution may appear to provide a good fit 

to sample data from a population mixture distribution particularly if each component has a large 

weight, if the components are not well separated, and if the sample size is small.  For example, 

for the case of n=25 and w=0.5, the confidence interval for the single component distribution 

well encloses the population mixture distribution.  As the sample size increases, bias near the 

lower tail and the median become more pronounced.  For the small weights, biases are evident in 

the lower tail, which corresponds to the component with less weight.  As the degree of separation 
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increases, biases associated with fitting a single component distribution become more 

pronounced, as shown in Figure 7.  In all cases, the tails and the inflection region are poorly 

represented.  With an increase in the separation of the components, the use of single component 

distributions became clearly unreasonable.     

Quantitative summaries of results for both fitted mixture and fitted single component 

distributions are given in Tables 2 and 3 for w=0.3 and w=0.5, respectively.  Both tables are 

based upon n=100.  The point values of the 2.5, 30, 50, 75 and 97.5 percentiles, and of the mean 

and standard deviation, of the population distribution are given in each case.  The 95 percent 

confidence intervals for these statistics are also given based upon the results of bootstrap 

simulation. 

In the case of the fitted mixture distributions, the confidence intervals enclose the 

population values in all cases.  However, when a single component distribution is used, biases 

are more pronounced for the smaller weight, increased separation between components, and 

increased variability for each component, and are particularly evident for percentiles near the 

inflection point of the mixture distributions.  Conversely, the results suggest that it may be 

difficult to discern that a single component is not appropriate if the components are not well 

separated and/or if the variability within the components is relatively small.  

5.0 DEPENDENCIES AMONG SAMPLING DISTRIBUTIONS OF PARAMETERS 
OF MIXTURE DISTRIBUTIONS 

 The dependencies among estimated parameters of a fitted mixture distribution were 

investigated.  Figures 8, 9, and 10 display scatter plots of bootstrap simulation results for 

parameters of two component lognormal distributions with separation between components of 

two, four and ten standard deviations, respectively, based upon n=100 and w=0.5.  
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From Figure 8, there exists a positive dependency between parameters in most cases 

except for β2, for which there is negative dependency versus w, α1, α2, β1.  For example, with an 

increase in w, there are more samples with values that fall within the first component and fewer 

samples that fall within the second component.   Thus, there will be an increase in the means of 

both components and in the standard deviation of the first component, simultaneous with a 

decrease in the standard deviation of the second component because variability in the second 

component is reduced.   

When there is large separation between the two components, the variation in the mixing 

weight will not lead to a substantial increase or decrease of mean in a component; hence, the 

dependency between the parameters become weaker.  For example, the correlation coefficients 

between w and α1, w and β1, w and α2, w and β2 for the case of Figure 10 are -0.006, -0.02, 0.005 

and 0.04, respectively.  These results indicate that the dependencies among parameters in a 

mixture distribution are strongly associated with the magnitude of separation between two 

components.   

6.0 AN ILLUSTRATIVE CASE STUDY:  NOX EMISSION FACTOR FOR A COAL-
FIRED POWER PLANT  

The methodology for simulating variability and uncertainty based upon mixture 

distributions is demonstrated via an empirical case study of a 12-month average emission factor 

for a tangential-fired, coal-fired boiler with low NOx burners and overfire air.(39)  This dataset 

cannot be fit well by any single distributions and the number of data points in the data set is 

relatively small (n=36). 

A mixture distribution with two lognormal components was fit to the case study dataset. 

The parameter estimation results for the mixture of two lognormal distributions are:  
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                    Mixing weight=0.352 
                    1st component: Mean of ln(x)=6.064, Standard deviation of ln(x)=0.345 
                    2nd component:  Mean of ln(x)=6.269, Standard deviation of ln(x)=0.0847 

The fitted mixture distribution is shown in Figure 11 in comparison to the data, as are the 

results of bootstrap simulation.  The fitted lognormal distribution and the results of bootstrap 

simulation are shown in Figure 12 as a comparison example. In Figure 11, all of the data are 

within the 95 percent confidence interval, and approximately 92 percent of the data are within 

the 50 percent confidence interval indicating an excellent fit.  In particular, there is good 

agreement between the right tail of the mixture distribution and the observed data.  In Figure 12, 

approximately 84 percent of the data are within of the 95 percent confidence interval and 33 

percent of the data are within the 50 percent confidence interval, indicative of a poor fit.   

It is typically the case that the confidence interval for a positively skewed fitted single 

component distribution is widest at the upper percentiles of the distribution.  However, in the 

case of the fitted mixture distribution, there is also a widening of the confidence interval at a 

cumulative probability between approximately 0.07 and 0.45.  Table 4 shows estimates of 

uncertainty in the parameters of the fitted mixture distribution.  The 95 confidence interval of the 

weight parameter is from 0.078 to 0.523.   The range of uncertainty in the weight parameter 

causes the ‘bulge’ in the confidence interval of the fitted mixture distribution for the cumulative 

probabilities similar to the range of uncertainty in the weight.  

Tables 5 and 6 summarize the results for the 95 percent confidence intervals of the mean 

and 95th percentile of variability, respectively, based upon the four distributions fit to the dataset.  

The results are based upon the average of 10 bootstrap simulations, each with 500 bootstrap 

samples.  The numerical precision of the estimates is indicated by intervals given in brackets.  

These intervals were estimated based upon the standard error of the ten bootstrap simulations.  
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The standard error is typically less than 0.5 percent of the mean value, indicating that the results 

are precise to almost three significant figures.   

The upper bound of the 95 percent confidence interval for the mean based upon the 

mixture distribution, which has a best estimate of 532 and a precision of 530 to 535, is 

significantly lower than the values based upon the single component distributions.  For example, 

the corresponding estimate based upon the Weibull distribution is 543 with a precision of 542 to 

545.  Although the precision intervals for the lower bound estimates of the 95 percent confidence 

intervals overlap, it appears that the mixture distribution implies a higher value of this quantity 

than do the single component distributions.  Therefore, the 95% confidence interval for the mean 

is significantly narrower when estimated based upon the mixture distribution compared to the 

single component distributions.  The mixture distribution has a better fit to the upper tail of the 

empirical distribution of the data. 

The differences between the mixture distribution and the single component distributions 

are more pronounced with respect to the 95 percent confidence interval for the 95th percentile of 

variability.  The mean estimate of this statistic is 638, with a precision of 631 to 645, based upon 

the mixture distribution.  In contrast, the mean estimate is significantly higher when based upon 

any of the three single component distributions.  The lower bound of the confidence interval 

based upon the mixture distribution is 581 with a precision of 578 to 584.  This is substantially 

lower than for any of the single component distributions.  The upper bound of the confidence 

interval is 750 with a precision of 739 to 762.  This is significantly lower than for the other 

distributions.  Thus, the mean and the confidence interval of the mean for the 95th percentile have 

significantly lower values for the mixture distribution compared to any of the single component 

distributions.  This is because the mixture distribution better fits the data in the upper tail and 
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does not overestimate the tail. 

7.0 DISCUSSION 
The use of mixture distributions is a promising means to improve the estimates of 

uncertainty in statistics estimated from the fitted distribution because of improved fit to data, 

compared to single component distributions.   However, there is a "bulge" in the confidence 

interval in the region of cumulative probability representing the inflection point between 

components of the mixture.  Thus, there is a clear trade-off between improved fit based upon an 

increased number of parameters and the range of uncertainty for at least portions of the CDF.  As 

Leoroux (40) points out, the elimination of unnecessary components in a mixture might lead to 

more precise estimates of the parameters, and, by extension, of other statistics.  Thus, it is 

important to have as many components in the mixture as needed to obtain a reasonable fit to the 

data, but not to have too many. 

Aside from the "bulge", the confidence interval can be relatively narrow for other 

portions of the cumulative distribution and for some statistics.  In the empirical case study, the 

narrowest confidence interval for the mean was obtained from the mixture distribution.  Thus, a 

mixture distribution may yield the most statistically efficient estimate of the sampling 

distribution of the mean.  The results would vary in other cases.  For example, if the weight 

parameter led to an inflection point at a location similar to the mean, the confidence interval for 

the mean could be comparatively wide. 

8.0 CONCLUSIONS 

 Mixture distributions have the potential to improve the goodness of fit to datasets not 

adequately described by a single parametric distribution.  This paper successfully demonstrated 

methods for fitting mixture distributions to data and for making inferences regarding uncertainty 
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using illustrative two-component mixture lognormal distributions.  The methods introduced here 

can be extended to other components, more components, or both.  

MLE method is preferred for parameter estimation of mixture distributions because of its 

practicality and generality.  For purpose of bootstrap simulation, a high-resolution empirical 

distribution is recommended to represent the assumed population distribution for the mixture 

distribution because it allows for the weight to vary randomly from one bootstrap sample to the 

next.  Bootstrap simulation is recommended for use in developing confidence intervals for 

statistics estimated from mixture distributions since there are no analytical solutions available.    

The robustness of variability and uncertainty analysis based upon mixture distribution 

with respect to sample size, mixing weight, and degree of separation between components of 

mixtures was evaluated.  Results are more robust when components are of comparable weight or 

the sample size is sufficiently large.  When two components are well separated, the stability of 

results is improved; however, larger uncertainty arises around the separated region. 

A single component distribution may appear to provide a good fit to sample data from a 

population mixture distribution particularly if each component has a large weight, if the 

components are not well separated, and if the sample size is small.  Under these circumstances, a 

single component distribution may be a better choice because it has fewer parameters and better 

numerical stability. 

Substantial dependencies exist in the sampling distributions of the five parameters in 

cases with little separation between the components.  However, with an increase of the 

magnitude in the separation, the parameters become independent. 

Recommended future studies include the extension of the approaches presented here to 

other types of components or to mixture distributions with more components.  The percentile 
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method was used here to form bootstrap confidence intervals for both single component and 

mixture distributions.  There may be opportunities to obtain improved results with other 

methods, such as the BCa method, with a trade of increased computational complexity. 

The use of mixture distributions is a promising method for improving the fit of 

distributions to data and for obtaining improved estimates of uncertainty in statistics estimated 

from the fitted distribution.  The use of mixture distributions should be considered and evaluated 

in situations in which single component distributions are unable to provide acceptable fits to the 

data, or in situations in which it is known that the data arise from a mixture of distributions.  

 



Draft:  Submitted to Risk Analysis 

22 

 

 
ACKNOWLEDGEMENTS  

This work was supported by the U.S. Environmental Protection Agency's Science to Achieve 

Results (STAR) grants program via grants R826766 and R826790.  This paper has not been 

subject to any EPA review.  Therefore, it does not necessarily reflect the views of the Agency 

and no official endorsement should be inferred.  



Draft:  Submitted to Risk Analysis 

23 

 

 REFERENCE 

1. Bogen, K.T. and Spear, R.C., “Integrating uncertainty and interindividual variability in 
environmental risk assessment,” Risk Analysis 7, 427-436 (1987). 

2. IAEA (International Atomic Energy Agency),  “Evaluating the reliability of predictions 
made using environmental transfer models,” Safety Series, No.100, Vienna, Australia, 
International Atomic Energy Agency (1989). 

3. Hattis, D. and Burmaster, D.E., “Assessment of variability and uncertainty distributions 
for piratical risk analyses,”  Risk Analysis 14, 713-729 (1994) 

4. Haimes, Y.Y, Barry,T., and Lambert, J.H., Eds., “Workshop proceedings: When and how 
can you specify a probability distribution when you don’t know too much?” Risk Analysis 
14, 661-706 (1994). 

5. Kaplan, S. and Garrick, B.J., “On the quantitative definition of risk,” Risk Analysis 1, 11- 
27 (1981). 

6. Morgan, M.G., and M. Henrion, Uncertainty: A Guide to Dealing With Uncertainty in 
Quantitative Risk and Policy Analysis (Cambridge University Press, New York, 1990).  

7. Frey, H.C., 1992, “Quantitative Analysis of Uncertainty and Variability in Environmental 
Policy Making,” Directorate for Science and Policy Programs, American Association for 
the Advancement of Science, Washington, DC. 

8. Frey, H.C. and Rhodes, D.S., “Characterization and Simulation of Uncertain Frequency 
Distributions: Effects of Distribution Choice, Variability, Uncertainty, and Parameter 
Dependence,” Human and Ecological Risk Assessment 4, 423-468 (1998). 

9. Frey, H.C. and Rhodes, D.S.,“ Characterizing, Simulating and Analyzing Variability and 
Uncertainty: An illustration of Methods Using an Air Toxics Emissions Example,” 
Human and Ecological Risk Assessment 2, 762-797 (1996). 

10. Boyce, C.P., “Comparison of Approaches for Developing Distributions for Carcinogenic 
Slope Factors,” Human and Ecological Risk Assessment 4, 527-577 (1998). 

11. Kelly, E.J., Roy-Harrison, W., “A Mathematical Construct for Ecological Risk: A Useful 
Framework for Assessments,” Human and Ecological Risk Assessment 4, 229-244 
(1998). 

12. Cohen, J.T., Lampson, M.A., and Bowers, S., “The Use of Two-stage Monte Carlo 
Simulation Techniques to Characterize Variability and Uncertainty in Risk Analysis,” 
Human and Ecological Risk Assessment 2, 939-971 (1996). 

13. Goodman, D., “Extrapolation in Risk Assessment: Improving the Quantification of 
Uncertainty, and Improving Information to Reduce the Uncertainty,” Human and 
Ecological Risk Assessment 8, 177-192 (2002). 



Draft:  Submitted to Risk Analysis 

24 

 

14. Helton, J.C., J.D. Johnson, Jow, H.-N,  McCurley, R.D., and Rahal, L.J., “Stochastic and 
Subjective Uncertainty in the Assessment of Radiation Exposure at the Waste Isolation 
Pilot Plant,” Human and Ecological Risk Assessment 4, 469-526 (1998). 

15. Frey, H.C., R. Bharvirkar, J. Zheng, “Quantitative Analysis of Variability and 
Uncertainty in Emissions Estimation,” Final Report, Prepared by North Carolina State 
University for Office of Air Quality Planning and Standards, U.S. Environmental 
Protection Agency, Research Triangle Park, NC, pp 1-10, (1999). 

16. Frey, H.C., and Bammi, S.,  "Quantification of Variability and Uncertainty in Lawn and 
Garden Equipment NOx and Total Hydrocarbon Emission Factors," Journal of the Air & 
Waste Management Association, 52, 435-448 (2002). 

17. Frey, H.C., and S. Li, "Quantification of Variability and Uncertainty in Natural Gas-
fueled Internal Combustion Engine NOx and Total Organic Compounds Emission 
Factors," Proceedings of the Annual Meeting of the Air & Waste Management 
Association, Orlando, FL, (2001). 

18. Zheng, J., H.C. Frey, “Quantitative Analysis of Variability and Uncertainty in Emission 
Estimation: An Illustration of Methods Using Mixture Distributions,” Proceedings of the 
Annual Meeting of the Air & Waste Management Association, Orlando, FL,  (2001). 

19. Frey, H.C., Zheng, J., “Probabilistic Analysis of Driving Cycle-Based Highway Vehicle 
Emission Factors,” (Accepted for publication, August, 2002, Environmental Science and 
Technology).    

20. Cullen, A.C., and Frey, H.C., Use of Probabilistic Techniques in Exposure Assessment:  
A Handbook for Dealing with Variability and Uncertainty in Models and Inputs, (Plenum 
Press: New York, 1999). 

21. U.S. EPA, Guiding Principles for Monte Carlo Analysis, EPA/630/R-97/001, U.S. 
Environmental Protection Agency, Washington, DC (1997). 

22. U.S. EPA, Report of the Workshop on Selecting Input Distributions for Probabilistic 
Assessment, EPA/630/R-98/004, Washington, DC (1999). 

23. Harris, C.M., “On Finite Mixtures of Geometric and Negative Binomial Distributions,” 
Commun, Statist.-Ther. Meth. 12, 987-1007 (1983). 

24. Kanji, G.K., “A Mixture Model for Wind Shear Data,” J.Appl. Statist. 12, 49-58 (1985). 

25. Wedel, M., Desarbo, W. S., Bult, J. R, Ramaswamy,V., “A Latent Class Poisson 
Regression Model for Heterogeneous Count Data,” Journal of Applied Econometrics, 
Vol. 8, No. 4, 397-411 (1993). 

26. Burmaster, D.E. and Wilson, A.M., “Fitted Second-order Finite Mixture Models to Data 
with Many Censored Values Using Maximum Likelihood Estimation,” Risk Analysis 20, 



Draft:  Submitted to Risk Analysis 

25 

 

235-255 (2000). 

27. Ott, W., “A Physical Explanation of the Log-normality of Pollutant Concentrations,” J. 
Of Air Waste and Management Association, 40: 1378-1383 (1990). 

28. Titterington, D.M, Smith, A.F.M, and Makov, U.E., Statistical Analysis of Finite Mixture 
Distributions, (John Wiley & Sons, New York, NY, 1985). 

29. Redner, R.A., Walker, H.F., “Mixture Densities, Maximum Likelihood and the EM 
Algorithm,” SIAM Review, 26, 195-239 (1984). 

30. Everitt, B.S. and Hand, D.J., Finite Mixture Distributions, (Chapman & Hall, London, 
UK, 1981). 

31. Cassie, R.M.,” Some Uses of Probability Paper in the Analysis of Size Frequency 
Distributions,” Austral. J. Marine and Freshwater Res., 5, pp. 513-523 (1954).  

32. Casella, G., Berger, R.L., Statistical Inference, (Duxbury Press: Belmont, CA, 1990). 

33. Dempster, A.P., Laird, N.M. and Rubin, D.B., “Maximum Likelihood from Incomplete 
Data via the EM algorithm,” J. Royal Statist. Soc., Series B, 39,1-38 (1977). 

34. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical Recipes in 
FORTRAN, (Cambridge University Press, New York, NY, 1992). 

35. Efron, B. and Tibshirani, R.J., an Introduction to the Bootstrap, (Chapman & Hall, 
London, UK, 1993). 

36. Angus, J.E., “Bootstrap One-sided Confidence Intervals for the Log-normal Mean,” 
Statistician, 43, 395-401(1994). 

37. Freedman, D.A., and Peters, S.C., “Bootstrapping a Regression Equation: Some 
Empirical Results,” J. of the American Statistical Association, 79, 97-106 (1984). 

38. Thombs, L.A., Schucany, W.R., “Bootstrap Predication Intervals for Autoregression,” J. 
of the American Statistical Association 85, 486-492 (1990). 

39. Frey, H.C., Zheng, J.,  "Quantification of Variability and Uncertainty in Air Pollutant 
Emission Inventories: Method and Example Case Study for Utility NOx Emissions, " J. of 
Air & Waste Manage. Association, 52, 1083-1095 (2002). 

40. Leroux, B., “Constant Estimation of a Mixing Distribution,” Annuals of Statistics, 
20:1350-1360 (1992). 

 

 
 
   



Draft:  Submitted to Risk Analysis 

26 

 

Table 1.  Selected Population Mixture Lognormal Distributions with Two Components 
Group 

No. µ1 µ2 σ2=σ2 
Group 

No. µ1 µ2 σ2=σ2 
Group 

No. µ1 µ2 σ2=σ2 

1 1.0 1.1 0.1 5 1.0 1.5 0.5 9 1.0 2.0 1.0 

2 1.0 1.2 0.1 6 1.0 2.0 0.5 10 1.0 3.0 1.0 

3 1.0 1.4 0.1 7 1.0 3.0 0.5 11 1.0 5.0 1.0 

4 1.0 2.0 0.1 8 1.0 6.0 0.5 12 1.0 
11.
0 

1.0 
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Table 2.  Comparison of 95% Confidence Intervals of Selected Statistics of Single and Two Component Mixture Lognormal   Distributions 
Fitted to the Sample from Mixture Populations with Varying Component Separation and Standard Deviation for n=100 and w=0.3 

Population Parameters a 

µ1 σ1 µ2 σ2 

Fitted 
Dist. b 

2.5 Percentile 
PV  (CI) c 

30 Percentile d 

PV  (CI) c 
50 Percentile 

PV  (CI) c 
75 Percentile 

PV  (CI) c 
97.5 Percentile 

PV  (CI) c 
Mean  

PV  (CI) c 

Standard 
Deviation 
PV  (CI) c 

Mixture 0.87 (0.82-0.91) 1.01 (0.98-1.04) 1.06 (1.04-1.10) 1.14 (1.11-1.17) 1.28 (1.27-1.34) 1.06 (1.02-1.07) 0.11 (0.10-0.13)  
1.1 

 
0.1 

Single 0.87 (0.84-0.91) 1.01 (0.98-1.04) 1.06 (1.04-1.09) 1.14 (1.11-1.17) 1.28 (1.24-1.35) 1.06 (1.02 -1.07) 0.11 (0.09-1.13) 

Mixture 0.85 (0.82-0.94)  1.07 (1.03-1.11) 1.15 (1.11-1.18) 1.24 (1.20-1.27) 1.39 (1.33-1.44) 1.14 (1.11-1.16) 0.14 (0.12-0.15) 
1.2 0.1 

Single 0.85 (0.85-0.94) 1.07 (1.03-1.09) 1.15 (1.10-1.16|) 1.24 (1.19-1.27) 1.39 (1.36-1.50) 1.14 (1.11-1.17) 0.14 (0.12-0.16) 

Mixture 0.87 (0.81-0.93) 1.07 (1.05-1.30) 1.34 (1.29-1.38) 1.43 (1.40-1.47) 1.58 (1.53-1.64) 1.27 (1.24-1.32) 0.21 (0.18-0.23) 
1.4 0.1 

Single 0.87 (0.83-0.96) 1.07 (1.10-1.20) 1.34 (1.21-1.31) 1.43 (1.35-1.48) 1.58 (1.64-1.88) 1.27 (1.23-1.32) 0.21 (0.19-0.26) 

Mixture 0.87 (0.82-0.92) 1.77 (1.05-1.88) 1.94 (1.88-1.97) 2.04 (1.99-2.06) 2.18 (2.12-2.22) 1.71 (1.60-1.78) 0.46 (0.42-0.50) 

1.0 0.1 

2.0 0.1 
Single 0.87 (0.76-0.99) 1.77 (1.25-1.48) 1.94 (1.51-1.75) 2.04 (1.97-2.20) 2.18 (2.68-3.45) 1.71 (1.60-1.82) 0.46 (0.47 -0.67) 

Mixture 0.44 (0.35-0.64) 1.01 (0.87-1.14) 1.27 (1.13-1.41) 1.63 (1.50-1.82) 2.62 (2.21-3.03) 1.34 (1.23-1.45) 0.55 (0.47-0.64) 
1.5 0.5 

Single 0.44 (0.44-0.64) 1.01 (0.87-1.09) 1.27 (1.11-1.35) 1.63 (1.48-1.83) 2.62 (2.33-3.36) 1.34 (1.16-1.39) 0.55 (0.48-0.77) 

Mixture 0.43 (0.35-0.62) 1.34 (1.12-1.57) 1.69 (1.57-1.88) 2.13 (1.98-2.31) 3.01 (2.66-3.43) 1.67 (1.58-1.84) 0.68 (0.59-0.78) 
2.0 05 

Single 0.43 (0.46-0.72) 1.34 (1.02-1.31) 1.69 (1.34-1.67) 2.13 (1.84-2.34) 3.01 (3.10-4.70) 1.67 (1.53-1.87) 0.68 (0.68-1.12) 

Mixture 0.46 (0.35-0.63) 1.75 (1.12-2.44) 2.67 (2.47-2.85) 3.13 (2.98-3.29) 4.02 (3.65-4.31) 2.35 (2.15-2.58) 1.06 (0.94-1.15) 
3.0 0.5 

Single 0.46 (0.45-0.82) 1.75 (1.21-1.72) 2.67 (1.76-2.33) 3.13 (2.62-3.63) 4.02 (5.67-8.08) 2.35 (2.14-2.82) 1.06 (1.25-2.22) 

Mixture 0.45 (0.36-0.65) 1.88 (1.19-5.45) 5.64 (5.48-5.88) 6.13 (6.03-6.34) 6.93 (6.70-7.24) 4.40 (4.08-4.97) 2.37 (2.09-2.51) 

1.0 0.5 

6.0 0.5 
Single 0.45 (0.34-0.97) 1.88 (1.57-2.78) 5.64 (2.68-4.25) 6.13 (4.89-7.57) 6.93 (12.3-27.3) 4.40 (4.03-6.22) 2.37 (3.57-8.71) 

Mixture 0.20 (0.15-0.40) 1.04  (0.84-1.29) 1.48 (1.30-1.76) 2.25 (1.93-2.60) 4.24 (3.42-5.23) 1.68 (1.51-1.91) 1.07 (0.85-1.26) 
2.0 1.0 

Single 0.20 (0.21-0.46) 1.04 (0.74-1.13) 1.48 (1.12-1.60) 2.25 (1.85-2.65) 4.24 (3.99-7.99) 1.68 (1.47-2.09) 1.07 (1.05-2.12) 

Mixture 0.20 (0.14-0.37) 1.77 (1.05-2.08) 2.46 (2.07-2.68) 3.26 (2.90-3.55) 5.06 (4.39-6.09) 2.41 (2.12-2.65) 1.33 (1.14-1.53) 
3.0 1.0 

Single 0.20 (0.22-0.60) 1.77 (0.94-1.57) 2.46 (1.54-2.32) 3.26 (2.65-4.01) 5.06 (6.16-12.7) 2.41 (2.16-3.19) 1.33 (1.70-3.77) 

Mixture 0.25 (0.12-0.33) 3.35 (1.01-3.97) 4.39 (3.95-4.72) 5.26 (4.95-5.62) 7.00 (6.39-7.72) 3.83 (3.37-4.22) 2.04 (1.88-2.35) 
5.0 1.0 

Single 0.25 (0.23-0.82) 3.25 (1.24-2.37) 4.39 (2.22-3.78) 5.26 (4.25-6.93) 7.00 (10.8-26.5) 3.83 (3.51-5.57) 2.04 (3.12-9.16) 

Mixture 0.23 (0.14-0.37) 8.87 (1.05-9.87) 10.5 (9.85-10.8) 11.4 (11.0-11.7) 12.9 (12.4-13.5) 8.11 (6.94-8.77) 4.63 (4.26-5.06) 

1.0 1.0 

11.0 1.0 
Single 0.23 (0.25-1.17) 8.87 (1.88-4.74) 10.5 (4.01-8.29) 11.4 (9.14-17.6) 12.9 (30.9-96.7) 8.11 (8.05-17.0) 4.63 (10.5-43.5) 

a: Arithmetic mean and standard deviation of each component. 
b: Fitted mixture is a two component lognormal, single distribution is lognormal. 
c: PV=Population value, CI =95 % confidence interval. Shading indicates that confidence interval does not enclose population value. 
d: That the 30 percentile instead of 25 percentile was chosen is because there is weight of 0.3.  The purpose is to observe how confidence 

interval varies at the inflection point.   
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Table 3. Comparison of 95% Confidence Intervals of Selected Statistics of Single and Two Component Mixture Lognormal Distributions 
Fitted to Sample from Mixture Populations with Varying Component Separation and Standard Deviation for n=100 and w=0.5 

Population Parameters a 

µ1 σ1 µ2 σ2 

Fitted 
Dist. b 

2.5 Percentile 
PV  (CI) c 

30 Percentile 
PV  (CI) c 

50 Percentile 
PV  (CI) c 

75 Percentile 
PV  (CI) c 

97.5 Percentile 
PV  (CI) c 

Mean  
PV  (CI) c 

Standard 
Deviation 
PV  (CI) c 

Mixture 0.84 (0.81-0.89) 0.97 (0.94-1.00) 1.04 (1.01-1.07) 1.12 (1.09-1.16) 1.26 (1.22-1.32) 1.04 (1.02-1.07)  0.11(0.10 -0.13)  
1.1 

 
0.1 

Single 0.84 (0.81-0.88) 0.97 (0.94-0.99) 1.04 (1.01-1.07) 1.12 (1.09-1.15) 1.26 (1.22-1.33) 1.04 (1.02-1.07)  0.11(0.09 -0.13) 

Mixture 0.84 (0.80-0.89) 0.99 (0.95-1.03) 1.10 (1.05-1.14) 1.20 (1.16-1.24) 1.37 (1.31-1.42) 1.10 (1.07-1.12) 0.14(0.13 - 0.16) 
1.2 0.1 

Single 0.84 (0.80-0.89) 0.99 (0.96-1.03) 1.10 (1.05-1.12) 1.20 (1.15-1.23) 1.37 (1.33-1.47) 1.10 (1.07-1.13) 0.14 (0.12 -0.16) 

Mixture 0.84 (0.80-0.89) 1.00 (0.96-1.04) 1.22 (1.08-1.32) 1.40 (1.34-1.43 1.56 (1.50-1.60) 1.20 (1.15-1.23) 0.22 (0.20 -0.24) 
1.4 0.1 

Single 0.84 (0.76-0.87) 1.00 (0.99-1.09) 1.22 (1.13-1.23) 1.40 (1.28-1.41) 1.56 (1.58-1.83) 1.20 (1.16-1.24) 0.22 (0.20 -0.26) 

Mixture 0.85 (0.79-0.88) 0.99 (0.94-1.03) 1.20 (1.07-1.90) 2.00 (1.93-2.03) 2.18 (2.10-2.21) 1.49 (1.38-1.58) 0.51 (0.49-0.53) 

1.0 0.1 

2.0 0.1 
Single 0.85 (0.61-0.82) 0.99 (1.00-1.21) 1.20 (1.30-1.51) 2.00 (1.63-1.96) 2.18 (2.38-3.19) 1.49 (1.39-1.61) 0.51 (0.44-0.66) 

Mixture 0.41 (0.33-0.53) 0.83 (0.73-0.99) 1.19 (1.06-1.35) 1.58 (1.44-1.79) 2.58 (2.18-3.12) 1.26 (1.16-1.39) 0.57 (0.48-0.69) 
1.5 0.5 

Single 0.41 (0.36-0.57) 0.83 (0.73-0.94) 1.19 (1.02-1.27) 1.58 (1.38-1.75) 2.58 (2.24-3.33) 1.26 (1.16-1.39) 0.59 (0.49-0.77) 

Mixture 0.39 (0.34-0.53) 0.88 (0.72-1.12) 1.48 (1.25-1.66) 1.99 (1.75-2.19) 2.96 (2.55-3.44) 1.49 (1.37-1.62) 0.71 (0.61-0.81) 
2.0 05 

Single 0.39 (0.36-0.58) 0.88 (0.78-1.07) 1.48 (1.16-1.50) 1.99 (1.64-2.17) 2.96 (2.88-4.69) 1.49 (1.36-1.69) 0.71 (0.67-1.13) 

Mixture 0.41 (0.31-0.52) 0.87 (0.72-1.11) 2.06 (1.24-2.63) 2.95 (2.69-3.15) 3.89 (3.53-4.23) 1.97 (1.74-2.34) 1.13 (0.99-1.23) 
3.0 0.5 

Single 0.41 (0.30-0.59) 0.87 (0.82-1.84) 2.06 (1.37-1.91) 2.95 (2.15-2.98) 3.89 (4.45-7.99) 1.97 (1.74-2.35) 1.13 (1.15-2.16) 

Mixture 0.37 (0.31-0.52) 0.88 (0.73-1.12) 2.30 (1.31-5.58) 5.99 (5.75-6.19) 6.79 (6.57-7.16) 3.44 (3.05-4.00) 2.55 (2.44-2.64) 

1.0 0.5 

6.0 0.5 
Single 0.17 (0.16-0.62) 0.88 (0.79-1.69) 2.30 (1.75-3.10) 5.99 (3.50-5.90) 6.79 (9.54-23.6) 3.44 (2.91-4.91) 2.55 (2.81-5.43) 

Mixture 0.18 (0.12-0.28) 0.71 (0.51-0.93) 1.31 (1.07-1.54) 2.08 (1.74-2.35) 4.32 (3.19-5.28) 1.54 (1.3-1.72) 1.11 (0.85-1.41) 
2.0 1.0 

Single 0.18 (0.15-0.37) 0.71 (0.50-0.87) 1.31 (0.95-1.46) 2.08 (1.64-2.49) 4.32 (3.75-7.95) 1.54 (1.33-1.96) 1.11 (0.97-2.32) 

Mixture 0.18 (0.12-0.30) 0.71 (0.50-1.09) 1.89 (1.37-2.37) 2.93 (2.49-3.30) 4.86 (4.12-5.91) 1.97 (1.75-2.27) 1.37 (1.18-1.61) 
3.0 1.0 

Single 0.18 (0.14-0.42) 0.71 (0.57-1.05) 1.89 (1.13-1.84) 2.93 (2.10-3.36) 4.86 (5.27-11.8) 1.97 (1.75-2.77) 1.37 (1.54-3.84) 

Mixture 0.16 (0.12-0.27) 0.71 (0.49-1.02) 3.55 (1.36-4.16) 5.01 (4.42-5.28) 6.78 (6.01-7.64) 3.06 (2.56-3.44) 2.26 (2.05-2.46) 
5.0 1.0 

Single 0.16 (0.12-0.49) 0.71 (0.63-1.47) 3.55 (1.44-2.80) 5.01 (3.09-5.80) 6.78 (9.46-26.3) 3.06 (2.66-4.98) 2.26(2.99-10.3) 

Mixture 0.16 (0.11-0.27) 0.69 (0.48-1.06) 8.83 (1.38-10.2) 10.9 (10.5-11.4)  12.7 (12.3-13.5) 6.02 (5.20-7.22) 5.09 (4.88-5.32) 

1.0 1.0 

11.0 1.0 
Single 0.16 (0.12-0.63) 0.69 (0.90-2.48) 8.83 (2.42-5.51) 10.9 (5.72-13.3) 12.7 (21.1-81.9) 6.02 (5.22-13.2) 5.09 (7.65-43.3) 

a: Arithmetic mean and standard deviation of each component. 
b: Fitted mixture is a two component lognormal, single distribution is lognormal. 
c: PV=Population value, CI =95 % confidence interval. Shading indicates that confidence interval does not enclose population value. 
d: That the 30 percentile instead of 25 percentile was chosen is because there is weight of 0.3.  The purpose is to observe how confidence 

interval varies at the inflection point.  
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  Table 4.   Uncertainty of estimated parameters of mixture lognormal distribution fitted to 12-
month average NOx emission data for tangential coal-fired furnace with low NOx 
burners and overfire air 

Parameter Units 2.5th   Percentile Mean 97.5th Percentile 

Weight  0.078 0.249 0.523 
µ1 g/GJ 5.560 5.910 6.223 
σ1 g/GJ 0.044 0.236 0.460 
µ2 g/GJ 6.219 6.267 6.318 
σ2 g/GJ 0.042 0.109 0.223 
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Table 5.  Comparison of Selected Statistics of the 95 Percent Confidence     
                Interval for the Mean Based Upon a Mixture Distribution and Three  
                Single Component Parametric Distributions (B=500).  

Absolute Uncertainty 
Relative 

Uncertainty* 
Distribution 

Type 

2.5% [L, U]b Mean [L, U]b 97.5% [L, U]b (-) % (+)% 

Mixture a 475 [468,483] 504 [501, 506] 532 [530,535] -5.6 5.7 
Normal 466 [463,468] 505 [504, 506] 545 [543,548] -7.7 7.9 

Lognormal 466 [464,469] 505 [504, 505] 546 [543,550] -7.7 8.1 
Weibull 467 [465,469] 506 [505, 506] 543 [542,545] -7.7 7.3 

 *:  Negative Random Error= (2.5th Percentile –Mean)/Mean,  
      Positive Random Error=(97.5th Percentile –Mean)/Mean 
  a:  Two component mixture lognormal distributions 
  [L, U]b: Lower bound and upper bound based upon the precision of the average of ten  
               bootstrap simulation 
 
 Table 6.  Comparison of Selected Statistics of the 95 Percent Confidence     
                 Interval for the 95% Percentile of Variability Based Upon a  
                 Mixture Distribution and Three Single Component Parametric  
                 Distributions (B=500).  

Absolute Uncertainty 
Relative 

Uncertainty* 
Distribution 

Type 

2.5% [L, U]b Mean [L, U]b 97.5% [L, U]b (-) % (+)% 

Mixture a 581 [578,584] 638 [631, 645] 750 [739,762] -8.9 17.6 
Normal 635 [633,638] 701 [699, 702] 768 [765,772] -9.4 9.6 

Lognormal 627 [623,633] 713 [711, 714] 813 [808,819] -12.1 14.0 
Weibull 627 [624,631] 692 [691, 693] 778 [770,785] -9.4 12.4 

  *:  Negative Random Error= (2.5th Percentile –Mean)/Mean,  
       Positive Random Error=(97.5th Percentile –Mean)/Mean 
  a:   Two component mixture lognormal distributions 
  [L, U]b: Lower bound and upper bound based upon the precision of the average of ten  
               bootstrap simulation 
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Figure 1.  Simplified Flow Diagram for Quantification of Variability and Uncertainty Using 

Bootstrap Simulation Based upon Mixture Distributions 

Two-dimensional simulation 
of uncertainty and variability 

Specify a mixture distribution P by estimating parameters from m 
observed samples 

Generate n (n>=2000) random samples from P.  When a random 
number from U(0, 1) is less than weight w, randomly sample from the 
1st component of P, otherwise sample from the 2nd component.  The n 
random samples form a cumulative density function for the assumed 

population distribution F. 

For i=1 to B 

Generate m random samples from the assumed population distribution F 
to form one Bootstrap Sample 

Fit a mixture distribution to each Bootstrap Sample by estimating a 
Bootstrap Replication of the distribution parameters using nonlinear 

optimization 

For nU=1 to nU=q 

Select one group of distribution parameters to represent one possible 
distribution for variability 

Simulate nV random samples from the specified distribution to represent 
variability 

Analyze results to characterize: 
- Confidence intervals for CDF 
- Sampling distribution for mean, standard deviation, and 

parameters 

Bootstrap Simulation 
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Figure 2.  95 Percent Confidence Intervals of Cumulative Distribution Functions of Two Component Lognormal Distributions Fitted 
to a Mixture Population Distribution (µ1=1.0, σ1=0.5, µ2=1.5, σ2=0.5) for n=25, 50 and 100, for w=0.1, 0.3 and 0.5 Based on 
Bootstrap Simulation (B=500) 
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Figure 3.  95 Percent Confidence Intervals of Cumulative Distribution Functions of Two Component Lognormal Distributions Fitted 
to a Mixture Population Distribution (µ1=1.0, σ1=0.5, µ2=2.0, σ2=0.5) for n=25, 50 and 100, for w=0.1, 0.3 and 0.5 Based on 
Bootstrap Simulation (B=500) 
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Figure 4.  95 Percent Confidence Intervals of Cumulative Distribution Functions of Two Component Lognormal Distributions Fitted 
to a Mixture Population Distribution (µ1=1.0, σ1=0.5, µ2=3.0, σ2=0.5) for n=25, 50 and 100, for w=0.1, 0.3 and 0.5 Based on 
Bootstrap Simulation (B=500) 
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Figure 5.  95 Percent Confidence Intervals of Cumulative Distribution Functions of Two Component Lognormal Distributions Fitted 
to a Mixture Population Distribution (µ1=1.0, σ1=0.5, µ2=6.0, σ2=0.5) for n=25, 50 and 100, for w=0.1, 0.3 and 0.5 Based on 
Bootstrap Simulation (B=500) 
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Figure 6.  95 Percent Confidence Intervals of Cumulative Distribution Functions of a Single Lognormal Distribution Fitted to a 
Mixture Population Distribution (µ1=1.0, σ1=0.5, µ2=1.5, σ2=0.5) for n=25, 50 and 100, for w=0.1, 0.3 and 0.5 Based on Bootstrap 
Simulation (B=500) 
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 Figure 7.  95 Percent Confidence Intervals of Cumulative Distribution Functions of a Single Lognormal Distribution Fitted to a 
Mixture   Population Distribution (µ1=1.0, σ1=0.5, µ2=2.0, σ2=0.5) for n=25, 50 and 100, for w=0.1, 0.3 and 0.5 Based on Bootstrap 
Simulation (B=500) 
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Note:  For definitions of w,α1, β1, α1, β1, refers to the Equations (2) and (3) in text. 
 
Figure 8.  Scatter Plots of Bootstrap Simulation (B=500) Results for Parameters of Two Component Lognormal Mixture Distributions 
for n=100, w=0.5 with Slightly Separated Components (µ1=1.0, σ1=0.5, µ2=2.0, σ2=0.5).
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Note:  For definitions of w,α1, β1, α1, β1, refers to the Equations (2) and (3) in text. 
 
Figure 9.  Scatter Plots of Bootstrap Simulation (B=500) Results for Parameters of Two Component Lognormal Mixture Distributions 
for n=100, w=0.5 with Moderately Separated Components (µ1=1.0, σ1=0.5, µ2=3.0, σ2=0.5). 
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Note:  For definitions of w,α1, β1, α1, β1, refers to the Equations (2) and (3) in text. 
 
Figure 10.  Scatter Plots of Bootstrap Simulation (B=500) Results for Parameters of Two Component Lognormal Mixture 
Distributions for n=100, w=0.5 with Highly Separated Components (µ1=1.0, σ1=0.5, µ2=6.0, σ2=0. 
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Figure 11.  Probability band for fitted mixture lognormal distribution (n=36, B=500). 
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Figure 12.  Probability band for fitted lognormal distribution (n=36, B=500). 
 
 
 
 
 
 
 
 
 
 


