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Bootstrap Simulation and Two-Dimensional Monte 
Carlo Simulation:  Dealing with Variability and 

Uncertainty, Mixture Distributions, Measurement 
Error, and Censored Data

• Handouts
– A hard copy of slides
– A hard copy of AuvTool’s user guide and 

technical report
– A hard copy of the paper about mixture 

distributions submitted to Risk Analysis
• CD disk

– AuvTool 98/ME version installation package
– AuvTool 2000/XP version installation package
– A PDF file of AuvTool’s user guide
– A PDF file of AuvTool’s technical report

Workshop Materials
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Agenda and Schedule

1:00 - 1:05 Welcome and Introduction Materials
1:05 - 1:35 Quantification of Variability
1:35 - 2:30 Quantification of Uncertainty in a Single Component Distribution
2:30 - 3:00 Introduction to AuvTool, Installation and its Use
3:00 - 3:15 Break
3:15 - 3:45 Censored Data
3:45 - 4:15 Mixture Distributions
4:15 - 4:45 Measurement Error
4:45 - 5:00 Summarization, Discussion and Evaluation
5:00 - 6:00 (Optional) Demonstration of AuvTool and Questions

• Introduction
• Quantification of variability
• Quantification of uncertainty in a single component 

distribution 
• Introduction to AuvTool
• Quantification of variability and uncertainty in censored 

datasets
• Characterization of variability and uncertainty based 

upon mixture distributions
• Characterization of variability and uncertainty with 

known measurement error

Outline
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• Limitations of qualitative or deterministic 
methods

• Increasing demand for quantitative analysis of 
variability and uncertainty in risk assessment, 
exposure assessment and emission 
estimation

Introduction

• Variability
– Heterogeneity of values with respect to time, 

space, or a population
– e.g, variation in feedstock or compositions; inter-

plant variability in design, operation, and 
maintenance; and intra-plant variability

• Uncertainty
– lack of knowledge regarding the true value of a 

quantity
– e.g, statistical sampling error, measurement 

errors, and systematic errors

Variability & Uncertainty
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Instructional Objectives

• To identify general approaches for fitting distributions to data
• To describe and compare parameter estimation methods
• To briefly describe, and compare selected goodness-of-fit 

techniques
• To describe, calculate, and characterize confidence intervals for 

statistics
• To describe bootstrap simulation and apply it to characterize 

confidence intervals for fitted distributions
• To introduce two-dimensional Monte Carlo simulation for 

simultaneously characterizing variability and uncertainty 
• To deal with special cases such as censored datasets,mixtures, 

and measurement error

Fitting Distributions to Data Sets

• Empirical (Non-Parametric) Approaches
• Parametric Approaches

–Selection of parametric distributions

–Selection of parameter estimation methods

• Evaluation of Goodness-of-Fit
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Key Assumptions
in Fitting Distributions to Data

• Random Sample

• Representative Sample

Statistical Estimation

• Inferences are made from samples of data 
regarding the characteristics of the population 
from which the data are a sample

• A “statistic” is a quantity that is estimated as a 
function of a random sample of data

• Examples of statistics include:
–moments or central moments

–percentiles or fractiles

–parameters of distributions
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Mean

• Mean (also Arithmetic Average, Average, 
Expected Value)

• For a continuous distribution:

• For a data set:

• For equally weighted data:

 E(x) = x f(x) dx

  E(x) = x ip iΣ
i = 1

n

  

x =
xiΣ

i = 1

n

n

Comparison of
Mean, Median, and Mode

Mean 
Median 

Mode

Mode

Median

Mean

(a) Symmetric Distribution

(b) Asymmetric Distribution
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Variance

• Variance is the second central moment with 
respect to the mean:

• The variance may be estimated from a data 
set as follows:

  σ2 = µ2 = E x – µ1
2 = x – µ1

2 f(x) dx

  

s2 = 1
n – 1

(xi – x)2Σ
i = 1

n

Coefficient of Variation

• The coefficient of variation is the standard 
deviation divided by the mean:

• Also referred to as “relative standard deviation”
• Non-dimensional indication of the relative 

dispersion or width of a distribution

  

ν = σ
µ
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Third Central Moment
and Skewness

• The third central moment is the basis for 
estimating skewness

• The third central moment is:

• The third central moment may be estimated as

• The skewness is given by:

  µ3 = E x – µ1
3

= x – µ1
3

f(x) dx

  γ1 =
µ3

σ3

  

m3 =
xi – x

3Σ
i = 1

n

n

Fourth Central Moment
and Kurtosis

• Kurtosis is a measure of the “peakedness” or 
flatness of a distribution

• Larger kurtosis implies “pointier peaks”
• Kurtosis is based upon the fourth central 

moment:
• The fourth central moment may be estimated by

• Kurtosis is defined as:

  µ4 = E x – µ1
4 = x – µ1

4 f(x) dx

  

m4 =
xi – x 4Σ

i = 1

n

n

  γ2 =
µ4

µ2
2 =

µ4

σ4
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Selecting a Parametric Distribution to Fit
to a Data Set

• The skewness and kurtosis of a data set can 
be used to help select a parametric distribution 
with similar shape

• This is an empirical approach to selecting a 
parametric distribution

• This approach may not be the most 
appropriate one to use

• Physical constraints and processes that 
generate data and distributions should also be 
considered

Empirical Basis for Selecting a 
Parametric Distribution:  Moment Plane

1

2

3

4

5

6

7

8

9

10

K
ur

to
si

s,
 β

2

0 1 2 3 4

Square of Skewness, β1

Beta (U-Shaped) Distribution Region

Uniform Distribution

Beta (J-Shaped) Distribution Region

Beta Distribution Region

Lognormal Distribution

Normal Distribution

ExponentialDistribution

Impossible Region



H. Christopher Frey and Junyu Zheng Annual Meeting Workshop  
North Carolina State University December 2002 of the Society for Risk Analysis 

10

Theoretic or Practical Basis for 
Common Parametric Distributions

– Normal Distribution:  Asymptotic for central limit theorem for sums.  
Useful for random measurement errors and physical quantities 
when coefficient of variation is small

– Lognormal Distribution:  Asymptotic for central limit theorem for 
products.  Mixing processes.  Useful for non-negative quantities 
that vary by orders-of-magnitude

– Weibull, Gamma:  alternatives to Lognormal for non-negative 
quantities; different weighting of tails

– Beta:  Useful for bounded quantities (e.g., 0 to 1), and for 
representing expert judgments

– Uniform, Triangular:  Useful for representing expert judgment
– Spline, Empirical:  Useful for representing data; often used to 

digitize expert judgments

Empirical Versus Parametric Distributions

• Both approaches are based on assumption of 
a random, representative data set

• A strictly empirical approach does not involve 
extrapolation beyond the range of observed 
data

• Artifacts of the shape of an empirical 
distribution may be attributable to random 
fluctuations
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Visualization of Data

• Visualization of data is a useful and important 
means for gaining insight into the 
characteristics of the data 
–central tendency

–dispersion

–skewness

–kurtosis 

Visualizing Data:
Histogram
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Visualizing Data:
Cumulative Distribution Functions

• Cumulative distribution functions are a 
quantitative way to represent empirical 
distributions of data

• The Hazen plotting position is often used:

• The general approach is to 
–rank order the data in ascending order 
–assign a rank, i, to each data point (from 1 to n)
–calculate the estimated cumulative probability
–Plot cumulative probability versus x

 FX(xi) = Pr(X < x i) = i – 0.5
n , for i = 1, 2, ..., n and x1 < x2 < ... < xn

An Example of Empirical Distribution
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An empirical distribution is defined as a discrete 
distribution, F, that gives equal probability, 1/n, to each 
value xi in the dataset, x (Efron, 1979). 
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Variability and Uncertainty

• Typically, data sets represent variability in a 
quantity over time, space, or members of a 
population

• Data are typically a sample from a population
• Ideally, data are a random and representative 

sample
• Can make inferences regarding estimated 

population statistics and distribution
• Lack of knowledge regarding the true population 

characteristics.
• Lack of knowledge = uncertainty

Uncertainty and Sampling Distributions

• Uncertainty due to small sample size
– Random fluctuations due to “sampling error”
– Quantified using confidence intervals

• Any statistic of a random variable is itself a random variable 
(e.g., mean, variance)

• The probability distribution for a statistic is referred to as a
“sampling distribution.”

• Important for evaluating whether your distribution model 
reasonably represents the data

• Can be calculated various ways, for example:

– Analytical solutions (restricted situations)
– Numerical methods (more generally applicable)



H. Christopher Frey and Junyu Zheng Annual Meeting Workshop  
North Carolina State University December 2002 of the Society for Risk Analysis 

14

Sampling Distributions
and Confidence Intervals

• A sampling distribution is the basis for a 
confidence interval

• A confidence interval is based upon specified 
percentiles of a sampling distribution
–For example, a 95 percent confidence interval 

is typically enclosed by the 2.5th and 97.5th

percentiles of the sampling distribution

• In principle, sampling distributions and 
confidence intervals can be developed for any 
statistic

Confidence Intervals
for the Mean

• Confidence intervals for means are often 
estimated based upon a normality assumption

• This assumption may be invalid for small data 
sets and/or highly skewed data sets

• We review the conventional analytical 
approach to confidence intervals for the mean

• We present a numerical method for estimating 
confidence intervals based upon bootstrap 
simulation
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Confidence Interval 
for the Mean

• The confidence interval for the mean is based 
upon the standard error of the mean and a 
standardized distribution:

• The standardized distribution is often assumed 
to be either the student-t or normal distribution

• For n > 30, there is not much difference
• The student-t distribution is wider for small n

  
x ± c

s
n
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Confidence Interval
for the Variance

• The confidence interval for the variance can be 
estimated analytically for a normally 
distribution population:

• The standardized distribution used here is the 
chi-square distribution

  Pr cα/2,n–1 ≤ (n–1) s2

σ2 ≤ c1–α/2,n–1 = 1 – α

Confidence Interval
for the Variance
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Implications of Sampling Error and
Sampling Distributions 

• Any statistic that you calculate from a data set 
is only one estimate of the true population 
value of that statistic

• In order to evaluate the adequacy of a fitted 
distribution, you should consider the range of 
possible values for statistics, such as the 
parameters of the fitted distribution

• Analytical solutions work in only a few cases
• A numerical method is more broadly applicable

Analytical Method: 
Advantage and Disadvantage

• Advantage
– Can get an exact estimate of confidence interval
– Simple to calculate

• Disadvantage
– Confidence intervals for means are often estimated 

based upon a normality assumption
– This assumption may be invalid for small data sets 

and/or highly skewed data sets
– Analytical solutions work in only a few cases
– Can not calculate confidence intervals for some 

statistics, e.g., parameters in a distribution
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Numerical Method: Bootstrap Simulation 

• Introduced by Efron in 1979
• A means for calculating confidence 

intervals for statistics in a general manner 
for situations in which analytical solutions 
are not available

Bootstrap Simulation:
Resampling at Random from a Data Set

  x = x1, x2, ..., xn

  

F → x1
*, x2

*, ..., xn
*

  x*1 = x3, x5, x 1, x 5, x 2

  x*2 = x4, x1, x 2, x 4, x 4
  x*3 = x2, x4, x 3, x 3, x 2

Example Bootstrap Samples
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Bootstrap Replications

• For each bootstrap sample, calculate 
(replicate) a statistic:   

θ* = s(x*)

   

θb
* = s(x*b)

• Repeat the replications B times: 

• b = 1, B

Bootstrap Simulation

• Original data set with n values
• B bootstrap samples of the data set, 

drawn from a distribution F
– Resampling
– Parametric distribution

• B replications of statistic of interest
– Confidence intervals
– Sampling distributions



H. Christopher Frey and Junyu Zheng Annual Meeting Workshop  
North Carolina State University December 2002 of the Society for Risk Analysis 

20

Bootstrap Simulation:
Example of the Leafy Vegetable Data Set
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Criteria for Selecting a Parameter 
Estimation Method

• Consistency: Converges to the “true” value of the 
parameter as the number of samples increases.

• Lack of Bias: Average value of the parameter estimate 
that is equal to that of the population value.

• Efficiency: Minimum variance in the sampling distribution 
of the estimate. 

• Sufficiency: Makes maximum use of information contained 
in a data set.

• Robustness: Works well even if there are departures from 
the underlying distribution. 

• Practicality: Computationally efficient
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Fitting Distribution to Data
Parameter Estimation Methods

• Method of Matching Moments:
–Typically involves matching the mean and 

variance of the distribution to the mean and 
variance of the data set (for a 2 parameter 
distribution)

–In general involves matching m moments or 
central moments of the distribution to those of 
the data, where m = number of parameters.

–Example:  parameters of the Normal 
distribution are the mean and standard 
deviation of the data

Fitting Distribution to Data:
Parameter Estimation Methods

• Maximum Likelihood Estimation
–Select distribution parameters so that the fitted 

distribution is the one most likely to produce the 
observed data set

–Involves maximization of the likelihood function:

–The log-likelihood function is often more 
convenient to use/program, since it is written as 
a sum rather than as a product

  L(θ1, θ2,..., θk) = f(xi|θ1, θ2,..., θk)Π
i = 1

n
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Examples of 
Log-Likelihood Functions

 

Name of Distribution a Log-likelihood Function 

Normal 
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a Note: Parameter values are different for each type of distribution even though the same symbol 
may be used to represent parameters of different distributions. 

Which Parameter Estimation
Method Should Be Used

• No method is necessarily always best
• Sometimes one method will fail for a particular 

data set
• MLE is often considered a more efficient 

method
• The specific values of distribution parameters 

will be different for a given data set if a 
different estimation method is used
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Parameter Estimation Using
Probability Plots

• Probability plotting is most appropriate as a 
“goodness-of-fit” technique

• It is often not the most satisfactory method for 
estimating parameters

• To create a probability plot, data must be rank 
ordered

• Least-squares regression techniques are 
based on an assumption of statistical 
independence of data

• This assumption is violated in probability plots

Fitting Distributions to Data:
Comparison of Cumulative Distributions
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Which Distribution
is the Correct One?

• Selection of a distribution is subjective
• With small sample sizes, statistical goodness-

of-fit techniques have little statistical power
• There is judgment in the selection of:

–parametric distribution

–parameter estimation method

–goodness-of-fit methods

–specific criteria to use for rejection in a given 
goodness-of-fit method

Bootstrap Simulation of Skewness and
Kurtosis to Aid in Selecting a Distribution
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Two-Dimensional Monte Carlo Simulation

Specify Probability Distribution F

For i=1 to B
(Where B=q)

Generate n random samples from F to form
one Bootstrap Samples

Fit a distribution to each Bootstrap Sample
By Estimating a Bootstrap Replication of the 
Distribution Parameters

Bootstrap

Simulation

Characterize sampling distributions based 
Upon Bootstrap replications of distributions 

parameters 

For nU=1 to q

Select one pair of distribution parameters to
Represent variability

Simulate p random samples from the specified
distribution to represent variability

Two-Dimensional
Simulation of 
Variability and 
Uncertainty

Analyze Results to Characterize:
•Confidence interval for CDF
•Sampling distributions for Mean, Variance and etc.

Two-Dimensional Monte Carlo Simulation
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Bootstrap Simulation of Confidence 
Intervals on Fitted Normal Distribution
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Examples of Confidence Intervals:
Sensitivity to Selected Distribution

Statistic Normal
Distribution

Lognormal
Distribution
(MoMM)

Lognormal
Distribution

(MLE)

5th Percentile of Variability (-0.03, 0.16) (0.04, 0.13) (0.04, 0.13)

50th Percentile of Variability (0.15, 0.29) (0.12, 0.29) (0.13, 0.28)

95th Percentile of Variability (0.28, 0.48) (0.28, 1.02) (0.27, 0.98)

Arithmetic Mean (0.15, 0.28) (0.15, 0.37) (0.15, 0.35)

Arithmetic Variance (0.0027, 0.020) (0.0033, 0.10) (0.0028, 0.093

Example 2:  Data Set
for a Partitioning Factor
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Example Case Studies

• Original data set 
• Has a value of 1.0
• Denoted as Data Set 2a (DS2a)

• Alternative Data Set
• Largest value adjusted from 1.0 to 0.96
• Denoted as Data Set 2b (DS2b)

• Evaluate sensitivity of fitted distributions to this 
change and to parameter estimation method

Dependence Between Arithmetic
Mean and Standard Deviation

0.00

0.05

0.10

0.15

0.20

0.25

V
ar

ia
nc

e

0.00 0.25 0.50 0.75 1.00
Mean



H. Christopher Frey and Junyu Zheng Annual Meeting Workshop  
North Carolina State University December 2002 of the Society for Risk Analysis 

29

Dependence Between Distribution
Parameters Alpha and Beta
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Second Order Random Variable for
Data Set 2a:  Based on MLE
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Second Order Random Variable for
Data Set 2b:  Based on MoMM
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Second Order Random Variable for
Data Set 2b:  Based on MLE
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Data Sets 2a and 2b:  Confidence
Intervals for Selected Statistics

Statistic DS3a
MoMM

DS3a
MLE

DS3b
MoMM

DS3b
MLE

5th Percentile of Variability (0, .22) (0, .81) (0, .23) (0, .22)

50th Percentile of Variability (0, .99) (0.11, 0.996) (0, 0.98) (0.11, 0.78)

95th Percentile of Variability (0.41, 1.00) (0.85, 1.00) (0.40, 1.00) (0.46, 0.999)

Parameter α (0.02, 2.22) (0.16, 7.15) (0.03, 2.34) (0.32, 5.79)

Parameter β (0.02, 5.54) (0.11, 1.32) (0.04, 6.14) (0.37, 7.75)

Arithmetic Mean (0.10, 0.75) (0.26, 0.95) (0.11, 0.73) (0.18, 0.72)

Arithmetic Variance (0.013, 0.23) (0.004, 0.27) (0.013, 0.23) (0.015, 0.20)

Goodness-of-Fit Tests

• Null hypothesis:  data were obtained from the 
hypothesized distribution

• Require a minimum amount of data (varies for 
different tests)

• A test statistic is calculated based on the data
• The value of the test statistic is compared to a critical 

value
• If the test statistic exceeds the critical value, then the 

null hypothesis is rejected
• One cannot “prove” that a hypothesized distribution is 

“correct”
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Chi-Squared Test

• select a hypothesized distribution
• estimate the parameters of the distribution from the data 

set (need at least 25)
• group the values into cells (or bins) in which each cell 

has at least five data points
• calculate the probability of obtaining values within the 

range of each cell based upon the hypothesized 
distribution

• calculate the expected number of data points that 
should be in each cell if the hypothesized distribution is 
acceptable

• calculate a test statistic; and 
• evaluate the test statistic

Example of Chi-Squared Test:  Normal 
Distribution Fitted to a Data Set (n=25)

• Test Statistic:

• Compare to chi-square distribution with k-r-1 degrees 
of freedom, k = 5 bins, r = 2 parameters; dof = 2

• Critical value = 6.0, test value = 10.3, reject hypothesis

End Points of Each
Cell

Number
of

Cell
Probability, p

i
,

Expected
Number of

Cell
Number

Lower
Bound

Upper
Bound

Values
in Cell, M

i

based on
Normal Dist.

Values in Cell,
E

i
Test Statistic

1 0.04 0.09 5 0.0941 2.35 2.98

2 0.09 0.12 5 0.0732 1.83 5.50
3 0.12 0.17 5 0.1432 3.58 0.56
4 0.17 0.27 5 0.2955 7.39 0.77
5 0.27 0.51 5 0.2699 6.75 0.45

Sum of Values: 25 0.876 21.90 10.27  

X2 =
Mi – E i

2

Ei
Σ

i = 1

k
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Kolmogorov-Smirnov Test

• Comparison between a stepwise empirical CDF and the 
CDF of the hypothesized distribution.  

• Maximum discrepancy in the estimated cumulative 
probabilities for the two CDFs is identified.  

• Maximum discrepancy is then compared to a critical value 
of the test statistic.  

• If the maximum discrepancy is larger than the critical 
value, then the hypothesized distribution is rejected

• More sensitive near the center of the distribution than at 
the tails 

• Need at least 5 data points

Kolmogorov-Smirnov Test Applied
to Leafy Produce Example, Normal Dist.
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Kolmogorov-Smirnov Test Applied
to Leafy Produce Example, Lognormal
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Maximum difference is 0.24, which is less than critical value of 0.4

Kolmogorov-Smirnov Test Applied
to Leafy Produce Example

• Cannot reject either the Normal or Lognormal 
as a fit to the data

• Goodness-of-fit tests may lead to inconclusive 
results
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Anderson-Darling Test

• A modification of the K-S test
• Gives more weight to the tails than does the K-

S test 
• The A-D test is not a distribution-free test.  For 

different distributions, A-D test statistics and 
the corresponding critical values are different 

Selection of Probabilistic Distribution Models

• Consideration of processes that generate random 
variable

• Goodness of fit

• The purpose of application of distributions
• Goodness-of-fit tests may lead to inconclusive 

results

• Bootstrap simulation technique
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Advice from Hahn and Shapiro (1967)

• One might conclude... that a proper procedure for selecting a 
distribution is to consider a wide variety of possible models, 
evaluate each by the methods here described, and assume as 
correct the one that provides the best fit to the data.  However, 
no such approach is being suggested.  Where possible, the 
selection of the model should be based on an understanding of 
the underlying physical properties...  The distributional test then 
provides a useful mechanism for evaluating the adequacy of the 
physical interpretation.  Only as a last resort is the reverse 
procedure warranted, and then, only with much care, for, 
although many models might appear appropriate within the 
range of the data, they might well be in error in the range for 
which predictions are desired.[pp 260-261].

For More Information

• Most of the examples presented here are from 
Chapter 5 of:

Cullen, A.C., and H.C. Frey, Probabilistic 
Techniques in Exposure Assessment:  A 
Handbook for Dealing with Variability and 
Uncertainty in Models and Inputs, Plenum:  
New York.  1999.
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Department of Civil Engineering
North Carolina State University

Raleigh, NC  27695

Junyu (Allen)  Zheng, Ph.D
H. Christopher Frey, Ph.D

Introduction to AuvTool, Installation and 
Its Use

• Developed at N.C. State University with 
support from the Office of Research and 
Development (ORD) of the U.S. Environmental 
Protection Agency

• AuvTool has not been subject to any EPA 
review.  Therefore, it does not necessarily 
reflect the views of the Agency and no official 
endorsement should be inferred.

Acknowledgement and Disclaimer
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• To develop a software module named AuvTool
(Analysis of Variability and Uncertainty Tool) for 
use with the EPA Stochastic Human Exposure 
Dose Simulation (SHEDS) modeling framework

• To implement  two-dimensional Monte Carlo 
method for simultaneously quantifying variability 
and uncertainty through the AuvTool

• To make the module more generally applicable for 
some other quantitative analysis fields

AuvTool: Objectives

AuvTool System Development: Design 
Considerations

• Easily accessible to EPA SHEDS model

• Batch analysis to deal with a large amount of 
data sets

• Generally applicable for other quantitative 
analysis fields such as emission estimation and 
risk assessment

• Extensibility and expansion of AuvTool
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AuvTool Main Features 

• An input sheet similar to spreadsheet

• List of Distributions
– Normal – Lognormal
– Beta – Gamma
– Weibull – Uniform
– Symmetric Triangle – Empirical
– Mixture normal with two components
– Mixture lognormal with two components

• Parameter Estimation Methods
– Matching Moment
– Maximum Likelihood Estimation (MLE)

AuvTool Main Features (Cont’d)

• Batch analysis 
– To automatically help user choose the best distributions

• Bootstrap simulation and two-dimensional 
simulation

– Single component distributions, 
– mixture distributions 

• Statistical Goodness of fit tests
– Kolmogorov-Smirnov test (K-S)
– Anderson-Darling test (A-D) 

• Instant graphical presentation and tabular 
summarization of results
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AuvTool Software Implementation: 
Structure Design

Random Seed 
Setting Module

Uncertainty Analysis:
Bootstrap Simulation 

Module

Variability 
Analysis Result 

Reporting Module

Analyzing the 
Sampling Data 
of Statistics of 

Interests 
Module

Data Entry, 
Importing and 

Exporting 
Module

Uncertainty 
Analysis Result 

Reporting ModuleDisplay a 
Fitted Fit

Visual 
Comparison

Variability Analysis:
Fitting Distribution 
Dataset by Dataset

Module

Batch Analysis
Module

Loading 
Distribution 
Information 

Module

Random Sample 
Generator 
Module 

Variability Analysis:
Mixture Distribution
Module

Uncertainty Analysis: 
Mixture Bootstrap 
Simulation Module

Variability Analysis 
Mixture Result 
Reporting Module

Uncertainty 
Analysis 
Result Mixture 
Reporting 
Module

• Visual C++ 6.0
- To implement all calculations and graphic user interface

• Graphics Server 5.0A
- To present calculation results in the visual graphic form

• Spread 3.0
- To provide a spreadsheet for user data input and calculation 

result output in tabular form

• Based on Windows 98 development environment
• An object-oriented programming technology is used

- More than 45 C++ classes are designed

AuvTool Software Development Environment 
and Tools
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AuvTool Installation
1.   Place the CD-ROM in your CD-ROM drive;
2.   Click the Start button; 
3.   Choose Run… from the Start menu;
4.   Type “X:\ XXX\” SETUP.EXE” where “X:\ ” is the drive and 

directory to which you copied the installation files. The 
Installation Program will begin. Follow the instructions on the 
screen.

You also can install AuvTool as follows:

1.   Place the AuvTool CD-ROM in the CD-ROM drive;
2.   Double-click the My Computer icon on the desktop;
3.   Double-click the CD-ROM drive in the My Computer window; and
4.   Double-click the “SETUP.EXE” on the CD-ROM. 

The Installation program will start.  Follow the instructions on the 
screen.

The Use of AuvTool

• Online help system in the AuvTool

• A PDF file of AuvTool’s user guide is available in 
the accompanying CD disk

• An demo example
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Data Entry, Importing and Exporting

Loading Known Distribution Information
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Fitting a Distribution for Variability: Dataset 
by Dataset

Batch Analysis (1)
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Batch Analysis (2)

Bootstrap Simulation: Probability Band 
Graph 
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Bootstrap Simulation- Data

Bootstrap: Uncertainty Graph
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Analyzing the Sampling Data of Statistics of 
Interests

Variability Analysis Result Reporting (1)
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Variability Analysis Result Reporting (2)

Variability Analysis Result Reporting (3)
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Uncertainty Analysis Result Reporting (1)

Uncertainty Analysis Result Reporting (2)
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Uncertainty Analysis Result Reporting (3): 
SHEDS Model Format

Uncertainty Analysis Result Reporting (4): 
SHEDS Model Format
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Uncertainty Analysis Result Reporting (5): 
General Format

Uncertainty Analysis Result Reporting (6): 
General Format
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Conclusion

• Implemented a general tool for quantifying 
variability and uncertainty in model inputs

• Provided the required variability and uncertainty 
inputs to the EPA/SHEDS model

• Can be generally used in any application where 
characterization of variability and uncertainty for 
datasets is needed.

More about AuvTool

• Not a commercial product
• Provided “as is” as a research tool
• Most but not all capabilities described in this 

workshop are implemented
• No warrantees of any kind
• It has been tested and found to work the best 

on Windows 98/ME. 
• No formal technical support
• No resources at this time for technical support 

or further modification
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Potential Bugs in AuvTool

• Program may crash when doing bootstrap 
simulation (especially for mixture distributions 
in Windows XP version)

• Importing Excel files or exporting sheets to 
Excel files may not be successful
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Department of Civil Engineering
North Carolina State University

Raleigh, NC  27695

H. Christopher Frey, Ph.D
Yuchao Zhao

Quantification of Variability and 
Uncertainty for Censored Air Toxics 

Emissions Data Sets

Motivations: Censored Datasets

• Toxic air pollutants pose human health risks in 
urban areas

• Quantification of variability and uncertainty for 
emissions from air toxics is needed for human 
exposure and risk analysis 

• Emission data sets for urban air toxics often 
contain several observations as below detection 
limit, which are referred to as “censored”
– Single detection limit

– Multiple detection limits
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Objectives

• To fit parametric distributions using Maximum 
Likelihood Estimation (MLE) to censored data 
sets

• To quantify variability and uncertainty for 
censored data sets using empirical bootstrap 
simulations

• To test and apply this method
• To compare with conventional approaches

Conventional Approaches for Handling 
Non-Detects When Calculating the Mean

• Use values only above Detection Limit (DL) 
• Replace values below DL with zero 
• Replace values below DL by DL/2
• Replace values below DL by DL
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Alternative to Conventional Approaches

• Fit a parametric distribution to censored data 
using Maximum Likelihood Estimation (MLE)

• MLE is asymptotically unbiased 
• Fitted distribution is the best estimate of variability
• Can estimate mean from the fitted distribution
• Also can estimate other statistics (e.g., standard 

deviation)
• Can quantify uncertainty because of random 

sampling error
• Bootstrap simulation can be used to quantify 

uncertainty

Maximize the Likelihood Function for Parametric 
Distribution Fitted to Censored Data
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L                  =     Likelihood function

DLm =     The mth detection limit

f                    =    Probability density function

F                   =    Cumulative distribution function

NDm =    Number of non-detects corresponding to detection limit 

DLm, where, m = 1, 2, …, p

p                   =    Number of detection limits

xi =    Detected data point, where, i = 1, 2, …, n

=    Parameters of the distributionkθθθ ,...,, 21
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Example Results of MLE: Fitted to Gamma, 
No Censoring
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Example Results of MLE: Fitted to Gamma, 
30% Censoring
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Example Results of MLE: Fitted to Gamma, 
60% Censoring
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Methodology

• Scheme of 
quantification 
of uncertainty 
and variability 
for censored 
data sets  
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Methodology: Empirical Bootstrap 
Simulation

(X1, X2,…, Xn) (X1*, X2*,…, Xn*)

sample at 
random with 
replacement

Original data set Empirical bootstrap 
sample

Xi = original data point

Xi
*= random value from original data

i  = 1, n

n = sample size of original data 

Empirical Bootstrap Simulation: Example

(1, 3, 6, 9)

Sample at random 
with replacement

Original data set

• Repeat B times, where B = 500

• Each time, calculate a statistic (e.g. distribution parameters)

• The B values of the statistic represent uncertainty

Empirical 
Bootstrap 
Samples

(3, 1, 9, 1)

(9, 3, 6, 9)
(1, 6, 1, 3)
(9, 1, 6, 9)
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Methodology: Empirical Bootstrap 
Simulation for Censored Data Sets

• In the original data set, either a true value is given 
for detected points or the detection limit is given 
for censored point

• An Indicator symbol      (1 or 0) is used to indicate 
the status of xi

• Randomly sample both xi and    at the same time
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Test Case 1

• 20 synthetic data points were generated 
from a gamma distribution (mean = 1 and 
standard deviation = 1)

• 0%, 30% and 60% censoring
• Gamma and lognormal distributions were fit 

to the censored empirical bootstrap 
samples 
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Results: Fitted Gamma Distribution, 
No Censoring
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Results: Fitted Gamma Distribution,
30% Censoring
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Results: Fitted Gamma Distribution, 
60% Censoring

90 percent
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Results: Fitted Lognormal Distribution,
No Censoring
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Results: Fitted Lognormal Distribution, 
30% Censoring
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Results: Fitted Lognormal Distribution, 
60% Censoring
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Results for Test Case 1:
Gamma Distribution

Censoring percentage 0% 30% 60% 

Number of non-detected data 0 6 12 

Number of detected data 20 14 8 

Total Data Points 20 20 20 

Best estimate 1.07 1.06 1.10 

2.5th percentile 0.64 0.65 0.61 

97.5th percentile 1.74 1.69 1.71 
Mean 

Width of 95% C.I. 1.10 1.04 1.10 
 

Results for Test Case 1:
Lognormal Distribution

Censoring percentage 0% 30% 60% 

Number of non-detected data 0 6 12 

Number of detected data 20 14 8 

Total Data Points 20 20 20 

Best estimate 1.01 1.00 0.97 

2.5th percentile 0.65 0.63 0.51 

97.5th percentile 1.51 1.53 1.52 
Mean 

Width of 95% C.I. 0.86 0.90 1.01 
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Results of Relative Uncertainty for Case 1

• For gamma distribution with 30% censoring, 
the relative uncertainty in mean is 
approximately –39% to +60%

• For lognormal distribution with 30% censoring, 
the relative uncertainty in mean is 
approximately –37% to +53%

Results: Comparison of Gamma and 
Lognormal, No Censoring for Case 1

Mean: data = 1.02, gamma = 1.07, lognormal = 1.01
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Comparison of Mean Estimated by MLE 
and Conventional Approaches for Case 1

No estimate of uncertainty is available

Replacing Censored Data With MLE Censoring 
 

Detected 
Points 
Only Zero DL/2 DL Gamma Lognormal 

0%  1.02 1.07 1.01 
30%  1.35 0.95 1.01 1.08 1.06 1.00 
60%  1.97 0.79 1.03 1.28 1.10 0.97 

 

Test Case 2

• 20 synthetic data points were generated 
from a gamma distribution (mean = 1 and 
standard deviation = 1)

• assign 0%, 30% and 60% censoring
• Gamma distribution were fit to the censored 

empirical bootstrap samples 
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Comparison of Mean Estimated by MLE 
and Conventional Approaches for Case 2

Replacing Censored Data With 
Censoring 

Detected 
Points 
Only Zero DL/2 DL 

MLE 

0% 1.05 1.04 
30% 1.41 0.99 1.04 1.08 1.02 
60% 2.04 0.81 1.11 1.23 1.00 

 

No estimate of uncertainty is available

Uncertainty Results from MLE/Bootstrap 
Method for Test Case 2

Censoring Percentage 0% 30% 60% 
Best estimate 1.04 1.02 1.00 
2.5th percentile 0.62 0.60 0.51 
97.5th percentile 1.56 1.55 1.58 

Mean 

Width of 95% C.I. 0.94 0.95 1.06 
 
• For 0% censoring, the relative uncertainty in mean is 

approximately -40% to +50%

• For 30% censoring, the relative uncertainty in mean is 

approximately -41% to +52%

• For 60% censoring, the relative uncertainty in mean is 

approximately -49% to +58%
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Example Case of Arsenic Emission Factor

• Case study: arsenic emission factor from coal 
combustion source

• 29 data points including 3 censored values

• Each censored data point has a different 
detection limit

• Some detected data values are less than some 
detection limits

• There is uncertainty regarding the empirical 
cumulative probability of such detected data 
values

Results of Example Case: Lognormal 
Distribution Fitted to Censored Data

• The 95 percent confidence interval for the mean is –91%  
to 264% of the mean value (8.2   10-4 lb arsenic / ton coal 
combusted)
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Conclusions

• MLE is an asymptotically unbiased method for 
estimating the mean of censored data

• Successfully applied MLE to multiply censored data
• Successfully demonstrated quantification of 

uncertainty in the mean of censored data based upon 
bootstrap simulation

• Estimated variability and uncertainty in censored part 
of the distribution

• If mean is above the the detection limit(s), the 
uncertainty of the mean is not very sensitive to 
variation in the detection limit(s).
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Quantification of Variability and 
Uncertainty Using Mixture Distributions:  

Evaluation of Sample Size, Mixing Weights 
and Separation between Components

Overview: Mixture Distribution 

• Motivations and definition

• Methodologies for quantifying variability and 
uncertainty based upon mixture distributions

• Properties of quantification of variability and 
uncertainty with respect to variation in sample 
size, mixing weight and separation between 
components

• Example case study
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Motivation: Mixture Distribution 

• Single component distributions might not well 
describe the variation in a quantity 

• Population distribution of a random variable is a 
mixture of distributions

• The use of single component distributions that are 
poor fits to data could potentially lead to bias in 
variability and uncertainty analysis. 

Definition: Mixture Distributions

)x(fw)x(fw)x(fw)x(f kkk θ+⋅⋅⋅+θ+θ= 222111

k....,,jforwj 10 =>With

121 =+⋅⋅⋅++ kwwwAnd

Where 
f(x) Probability density function for a mixture model 
fj(x|θj) Probability density function (PDF) for a component 

wJ The mixing weight
θJ Vector of parameters for a component

• Presently focus on two component Mixture Lognormal
Distributions )x(f)w()x(wf)x(f 21 1−+=
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Parameter Estimation: Mixture Distribution

• Maximum Likelihood Estimation (MLE)
– MLE is widely used due to its relative efficiency and generality

∑ ∑∑
= == 








σµ=σµ=
n

1i

k

1j
jjijj

n

1i
i )x(fwln)],,wx(f[lnL

1w
k

1j
j =∑

=

Where:

jj,σµ

n:  The number of data points
k:  The number of components in a mixture distribution
L: Log-likelihood function
:   The parameters in the jth component in a mixture  

distribution 

Parameter Estimation: Mixture Distribution

• Procedures to find an approximate solution of 
the likelihood function in the M LE
–EM algorithm 

–Newton-like Metho ds

–Nonlinear optimization metho d

• Nonlinear optimization method was chosen
–St raightforwar d

–Does not require calculation of derivatives of 
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Quantification of Uncertainty and Variability: 
Mixture Distribution

• Specify mixture distribution:  specifying wi, θi

• Represent the mixture distribution as an empirical 
CDF

• Use empirical CDF as assume d population 
distribution for parametric simulation

• Bootstrap simulation
– Method for generating bootstrap samples

– Methods for forming confidence intervals

Quantification of Uncertainty and Variability: 
Mixture Distribution

• Method for generating bootstrap samples
– Sampling algorithm based upon the empirical distribution 

was used

• Methods for forming confidence intervals
– Percentile Method

» Easy to use
» Only first-order accurate

– BCa Method (Bias Correction and Acceleration )
» transformation respecting
» second-order accurate
» heavy computation load
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Properties:  Study Design

• Sample size: 25, 50 and 100

• Mixing weight: 0.1, 0.3 and 0.5

• Separation between components:  1σ, 2σ, 4σ, 10σ

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

1σ

Study Design (Cont’d)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

4σ

108 synthetic datasets which cover the variation 
in mixing weight, sample size and separation were 
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95 Percent Confidence Intervals of Cumulative Distributions of Two Component 
Lognormal Distributions Fitted to a Mixture Population Distributions  ( µµ1=1.0, 
µµ σσ σσ
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Parameter Dependency ( Lig htly Separated)

Scatter Plots of Bootstrap Simulation Results (B=500) for Two Component   
Lognormal Distributions ( µµ1=1.0, µµ2=2.0, σσ1=σσ2=0.5) 
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Scatter Plots of Bootstrap Simulation Results (B=500) for Two Component   
Lognormal Distributions ( µµ1=1.0, µµ2=3.0, σσ1=σσ2=0.5) 
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Example Case Study: Fitted Normal 
Distribution

n=36

K-S test = 0. 16

Critical Value=0. 15
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Example Case Study: Fitted Lognormal 

n=36

K-S test = 0. 17

Critical Value=0. 15
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Example Case Study: Fitted Weibull 
Distribution

n=36

K S test = 0. 17

Critical Value=0. 15
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Weight = 0.352

1st Component:  Mean of ln(x)=6.064,  Std. Dev. of ln(x)=0.345

2nd Component:  Mean of ln(x)=6.269, Std. Dev. of ln(x)=0.0847
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Probability Band (Normal Distribution)
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Probability Band (Lognormal Distribution)

Percent of data in 50% CI:  30%

Percent of data in 95% CI:  83%
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Probability Band (Weibull Distribution)

Percent of data in 50% CI:  35%

Percent of data in 95% CI:  86%
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Probability Band (Mixture Lognormal Distribution)

Percent of data in 50% CI:  92%

Percent of data in 95% CI:  100%
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Uncertainty in t he Mean (B=500)

Absolute Uncertainty 
Relative 

Uncertainty* 
Distribution 

Type 
2.5% [L, U]b Mean [L, U]b 97.5% [L, U]b (-) % (+)% 

Mixture a 475 [468,483] 504 [501, 506] 532 [530,535] -5.6 5.7 
Normal 466 [463,468] 505 [504, 506] 545 [543,548] -7.7 7.9 

Lognormal 466 [464,469] 505 [504, 505] 546 [543,550] -7.7 8.1 
Weibull 467 [465,469] 506 [505, 506] 543 [542,545] -7.7 7.3 

 *:  Negative Random Error= (2.5th Percentile –Mean)/Mean,  
     Positive Random Error=(97.5th Percentile –Mean)/Mean 
  a:  Two component mixture lognormal distributions 
  [L, U]b: Lower bound and upper bound (based upon 10 simulations) 
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Uncertainty in t he 95% Percentile of Variability 
(B=500)

Uncertainty 
Distribution 

Type 

2.5% [L, U]b Mean [L, U]b 97.5% [L, U]b 

Mixture a 581 [578,584] 638 [631, 645] 750 [739,762] 
Normal 635 [633,638] 701 [699, 702] 768 [765,772] 

Lognormal 627 [623,633] 713 [711, 714] 813 [808,819] 
Weibull 627 [624,631] 692 [691, 693] 778 [770,785] 

  a:  Two component mixture lognormal distributions 
  [L, U]b: Lower bound and upper bound (based upon 10 simulations) 

The observed data at the 95% percentile of empirical CDF  
is 612.6

Summary and Conclusion

• A method was developed to quantify variability and 
uncertainty based upon mixture distribution

• Bootstrap simulation results tend to be more stable 
normally for larger sample size

• When two components are well separated, the 
stability and accuracy of quantification of variability 
and uncertainty are improved

• Typically, there is greater uncertainty regarding 
percentile of mixture distributions coinciding with the 
separated region

• When two components are not well separated, a 
single distribution may often be a better choice 
because it has fewer parameters and higher 
numerical stability
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Summary and Conclusion (Cont’d)

• Dependencies may exist in sampling distributions of 
parameters of mixtures and are influenced by the 
amount of separation between the components

• The case study results indicate that a mixture 
lognormal distribution is a better fit to the selected 
case compared to single distributions

• The mixture distribution has potential to yield more 
efficient statistical estimates.

• Mixture distributions should be considered and 
evaluated in situations in which single component 
distributions are unable to provide acceptable fits to 
the data, or in situations in which it is known that the 
data arise from a mixture of distributions 
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Quantification of Variability and 
Uncertainty with Known Measurement 

Error

Overview: Measurement Error

• Motivation
• Measurement error and uncertainty
• Classification of measurement error
• Measurement error models
• Error free data construction
• Quantification of variability and 

uncertainty with measurement error
• Properties of solutions for variability and 

uncertainty via a case study  
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Motivation

• Measurement errors affects all statistical 
analysis, both formal and informal because it 
causes the probability distribution that 
generates the observed data to deviate from 
that which generates unobservable, error free 
data (Chesher, 1991)

• Potentially brings bias into variability and 
uncertainty analysis

Measurement Error and Uncertainty

• Measurement Error
– The deviation of the result of measurement from 

the true value of the measurable quantity 
(Dieck,1992) 

• Uncertainty of Measurement 
– An interval within which a true value of a 

measurement lies within a given probability 
(Rabinovich, 1999)
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Classification of Measurement Error

• Causes of Error (Rabinovich, 1999)
– Methodological error
– Instrument error
– Personal error 

• Properties of Error (Ellis, 1966; Barford, 1985)
– Systematic error
– Random error 

Measurement Error Models

• Additive Model

Where:  Zi = error contaminated data, observed data
Xi = error free data (true value)
ei =Measurement error, often be assumed   

as a normal distribution with mean 0
• Multiplicative model

- Multiplicative model can be log-transformed into       
the additive model

iii ez X +=

*
iii eXz =
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Quantification of Variability and Uncertainty:  
Error Free Data Construction

• Deconvolution Method
– Assumption 

» Known measurement error
» Additive measurement error models

fe(e) = PDF for the measurement error, often assumed 
as a normal distribution

fz(z) = PDF for the observed data set
fx(x) = PDF for the error free data

– Potential Problems
» Complicated mathematical inferences and computations  
» Not a common probability distribution for the fx(x), potential 

difficulties in sampling algorithms

dxxz −= ∫

Quantification of Variability and Uncertainty:  
Error Free Data Construction

• Alternative Approach
– Assumption

» Known measurement error and variance of the measurement 
error is less than variance of the observed dataset

Where: 
= Estimated error free data
= Observed or error contaminated data
= Sample mean of error contaminated or observed data

c  = Constant; can be found by:

z)c1(czX̂ ii −+=

)(S
S

S
c 2

e
2
z2

z

2
e

2
z σ>

σ−
=

iX̂
iz

z
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Quantification of Variability and Uncertainty wit h 
Known Measurement Error

• Bootstrap pair technique
Zi

*=(xi
*, ei

*) = xi,j + ei,j (i=1,2,.. B; j=1, 2,…n)
Where:

B = The number of bootstrap replication
n  = The sample size of a dataset  
xi,j = A random sample from a distribution  

describing error free data
ei,j = A random sample from a distribution 
describing measurement error

• Two-dimensional framework for characterizing 
uncertainty due to random sampling error

• Incorporation of the uncertainty from measurement 
error 

Case Study

• Purpose
– To demonstrate the use of the methods
– To investigate the effect of the size of measurement errors 

on the variability and uncertainty estimates

• Study design

Where: 
= Standard deviation of measurement error
= Standard deviation of the observed error-
contaminated data set

– A synthetic dataset with mean of 107.3, standard deviation 
of 60.9 and sample size of 25 

– Measurement error models: N(0, 10)(r=0. 16), N(20)(r=0.33), 
N(40)(r=0.66), N(55) (r=0.90)

Total

er
σ

σ
=

eσ

Totalσ
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Fitted Distributions to t he Error Free Datasets 
and t he Observed Dataset
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Probability Band for 
Measurement Error Model: N(0.0, 10.0)
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Uncertainty 
from 

measurement  
error is not 

included

Uncertainty 
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measurement  
error is 
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(Measurement Error is not combined) ( a=40.0)
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Sampling Distributions for t he Mean under 
Different Measurement Error Models. 
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Confidence Intervals for 
Mean (Random Sampling 

Error only) 

Confidence Intervals for 
Mean (Both Random 

Sampling and 
Measurement Error)  

 
 

Measurement 
Error model 

 
 

Analysis 
Method a 

2.5% Mean 97.5% 2.5% Mean 97.5% 
Analytic  83.4 107.3 132.4 83.4 107.3 132.4 N(0.0, 0.0)* 

Numerical 85.8 107.3 132.0 85.8 107.3 132.0 
Analytic 83.7 107.3 132.1 83.4 107.3 132.4 N(0.0, 10.0) 

Numerical 86.4 107.2 132.3 85.8 107.2 132.4 
Analytic 84.7 107.3 131.1 83.4 107.3 132.4 N(0.0, 20.0) 

Numerical 87.4 107.5 131.4 84.9 107.2 132.3 
Analytic 89.3 107.3 126.3 83.4 107.3 132.4 N(0.0, 40.0) 

Numerical 90.8 107.3 126.3 84.1 107.3 132.2 
Analytic 97.0 107.3 118.1 83.4 107.3 132.4 N(0.0, 55.0) 

Numerical 97.5 107.3 117.7 84.2 107.4 130.7 
Note:  The results listed here are the average values of 10 different simulations for each case. 
 *:  Random sampling error and measurement error are not separated for this case. 
            a:   Analytical solutions are based upon central limit theorem; numerical solutions are estimated from bootstrap 
simulation. 
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Summary and Conclusion

• A method is developed for constructing an error free 
data set based on the observed data set

• Demonstrates methods for improving the 
characterization of variability and uncertainty if there 
are known measurement errors in environmental data

• There exist substantial bias in the estimates of true 
variability if measurement error is substantial

• Uncertainty will be underestimated if uncertainty 
arising from measurement error is subtracted not 
characterized 

Summary and Conclusion (Cont’d)

• No substantial difference among 95% confidence intervals 
and sampling distributions for the mean for the observed 
data set and the error free data sets if the contribution 
from measurement error to the total uncertainty is 
considered

• To get an unbiased estimate of true variability, it is 
necessary to separate measurement error from the 
observed variability.
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• Introduction
• Quantification of variability
• Quantification of uncertainty in a single component 

distribution 
• Introduction to AuvTool
• Quantification of variability and uncertainty in censored 

datasets
• Characterization of variability and uncertainty based 

upon mixture distributions
• Characterization of variability and uncertainty with 

known measurement error

Outline

Discussion and Questions


