Food allergens: Challenges for risk assessment

Stefano Luccioli, MD

Office of Food Additive Safety
Center for Food Safety and Applied Nutrition
Goals

• Introduce “food allergy”

• Describe challenges for risk assessment
 ➢ Food allergen
 ➢ Food allergic reaction - mechanisms and key scientific issues
 ➢ Threshold/ Biological end point
 ▪ Food challenge/ Eliciting doses
 ▪ Severity

• Conclusions
“Food allergy”

- Serious public health problem:
 - 30000 ER visits/ 2500 hospitalizations/ 150 deaths/yr

- Increased prevalence over past 20 years
 - 4% of total US population: Infants > adults

- Over 150 foods implicated; wide distribution of major allergenic foods:
 - US: peanut, tree nut, soy, egg, milk, wheat, fish, shellfish
 - Europe: ... sesame, mustard, celery
 - Japan: ... buckwheat

- No effective treatment – Avoidance / product labeling is key!

- Lifetime risk + consumer fears ⇒ psychosocial impact
Food allergy

Adverse reactions to food

- Immunological (Hypersensitivities)
 - IgE Mediated
 - Food Allergy
 - Non-IgE Mediated
 - Celiac Disease
- Non-Immunological (Intolerances)
 - Toxicological Example: Scombroid Poisoning
 - Metabolic Example: Lactose Intolerance
- Microbial
 - Infections Example: Salmonellosis
 - Toxins Example: Staphylococcal enterotoxins

http://www.cfsan.fda.gov/~dms/alrgn2.html#ii
Food allergen

- Food - peanut, soy, milk, etc.
- Protein in food - Ara h1, Ara h2, Ara h3, etc. (peanut)

- One food ⇒ multiple allergens
- Not all foods/ allergens the same

- Widely distributed in food supply
Food allergic reaction

- Unique toxicological response:
 - Immunological
 - Two phase (sensitization and elicitation)
 - Amplifier mechanism
- One exposure
- Minute amounts can trigger (*thresholds*)
- Potentially fatal
ALLERGY

Sensitization

IgE
Antibody

Elicitation/ Reactivity

Food protein

Food

B cell

T lymphocyte

Mast cell/ Basophil

Anaphylaxis

Skin- itchiness, flushing, hives, swelling, eczema

GI- nausea, vomiting, abdominal pain, diarrhea

Respiratory- tightness, runny nose, wheezing, throat closing/swelling

Vascular- dizziness, low blood pressure, heart irregularities, shock

Subjective
Sensitization

- Few individuals affected - genetic AND environmental factors
 - Exposure, cultural, processing

- Diagnose by food-specific IgE levels

- Risk assessment: Novel food proteins
 "Allergenicity safety assessment of foods derived from recombinant DNA plants - Codex Alimentarius, 2003"
Elicitation/ Reactivity

- Dose-dependent release of mediators, cytokines (Amplification mechanism)
 - Rapidly progresses in severity

- Varies according to allergen type/bioavailability/meal
 - GI absorption, alcohol use
 - Food matrix, exercise

- Specific IgE levels - poor predictors

- Genetics/host sensitivity to mediators

- Risk assessment: Allergen “Thresholds”
 - Safe exposure dose
 - Biological end points?

Mast cell/ Basophil

Food protein

• IgE independent ~20%

IgE Antibody

Food/Protein
Biological end point

- No validated animal models

- No good serum marker for predicting reactivity and/or severity

- Food challenge ⇒ eliciting dose
 - Double-blinded placebo-controlled (DBPC) food challenge in humans
 - Real-life exposure

- Reaction severity considerations
Food Challenge – typical protocol

- **NOAEL** and **LOAEL**

X 2X 4X 8X 16X 32X 64X 108X

- Starting dose (X) varies (usually mg doses)
- Time interval varies (15-60 min)
- Usually 2 to 10-fold (X) dose increments over 2-6 hrs

- **Dose escalation** of divided doses in food vehicle (w/ placebos) to final target dose*

- Stop after **objective** sign; some also record **subjective** symptoms

- Report eliciting dose - discrete (4X) and/or cumulative (7X) - interpreted as **Lowest Observed Adverse Effect Level (LOAEL)**; prior dose is No Observed....(NOAEL)
Food Challenge – data gaps

- Purpose mainly for diagnosis not for minimal eliciting dose determinations
 - Many first dose responders – NOAEL rare; ? true LOAEL

- Lack of standardization of allergen doses/ use of different food matrices for challenge

- Selection bias – patients with most severe reactions (anaphylaxis) often excluded.
 - Is the most sensitive population tested?
 - Children vs adults
 - Adolescents and individuals w/ asthma – fatal reactors
Reaction severity end point

- Allergic dose-response severity is on a continuum

Subjective **Objective** **Anaphylaxis** **Death**

- Anaphylaxis poorly defined - many end points possible
 - Early subjective/ objective complaints may be mild/ short-lived or signal something worse

- Symptoms may not be reproducible on subsequent rechallenge

- Potentiating/ mitigating factors for severity
 - Anxiety/stress; medications; asthma

- Do challenges mimic real-life severity exposures?
Conclusion: Food allergen = unique risk

- Allergens are normal constituents in food
- Potentially fatal
- No hazard to a large majority of population ⇒ ? label
- One food ⇒ Multiple allergens
- Complex and unique immune response - two phases (sensitization and elicitation/reactivity)
- Lack of good biological marker(s) for predicting reactivity and/or severity - many end points possible
- Dose-response relationship not well defined
 - Human food challenge data limited
 - Varies among different allergens and meals
 - Wide individual variability in response
Comparison to traditional food safety assessment approaches

Animal feeding models
- Genetic Homogeneity
- One ingredient in food
- Defined endpoints for severity
- NOAEL defined
- Reproducible
- Dose response

Allergen food challenges
- Genetic Heterogeneity
- Multiple allergens in food
- Multiple endpoints; severity not well defined
- LOAEL mainly; rare NOAEL
- May not be reproducible
- Dose distribution