Data quality, combining multiple data sources, and distribution fitting

Selected points and illustrations!

Dr Marion Wooldridge
26th July 2002

Outline of talk

- Data quality
 - what do we need?
- Combining multiple data sources
 - when can we do it?
 - an example explained
- Fitting distributions
 - how do we do it?
 - an example explained
What do we mean by data?

- Experimental results
 - numerical
- Field data
 - numerical
- Information on pathways/processes
 - words and numbers
- Expert opinion
 - words to convert to numbers?!

Why do we need data?

- Model construction
 - risk pathways
 - what actually happens?
 - do batches get mixed?
 - is the product heated? etc….
- Model inputs
 - estimate probabilities
 - estimate uncertainties
 - estimate variability
Which data should we use?

- The best available!

However…….

- A risk assessment is pragmatic
- A risk assessment is 'iterative'
- There are always data deficiencies
 - These are often 'crucial'

So what does this tell us?…..

What do we mean by pragmatic?

- Purpose of risk assessment…..

- To give useful info to risk manager
 - To aid decisions, usually in short term

- This leads to time constraints

- This generally means using currently available data for decisions ‘now’
 - However incomplete or uncertain that data
What do we mean by ‘iterative’?

- Often several stages, with different purposes
 - ‘Is there really a problem?’
 - rapid preliminary assessment
 - ‘OK, so give me the answer’
 - refine assessment
 - ‘Did we get it right?’
 - revisit assessment if/when new data

The minimum data quality required…..

- will be different at each stage
- so - why is that?…..
‘Is there really a problem?’

- Risk manager needs rapid answer
 - ‘preliminary’ risk assessment
 - Identify data rapidly available
 - may be incomplete, anecdotal, old, from a different country, about a different strain, from a different species, etc. etc……

- Still allows decision to be made
 - a problem…..
 - is highly likely - do more now!
 - may develop - keep watching brief
 - is highly unlikely - but never zero risk!

Stage 1: Conclusion...

- Sometimes, poor quality data may be useful data
 - is it ‘fit-for-purpose’
 - Don’t just throw it out!
OK, so give me the answer

- **refine risk assessment**
 - set up model
 - data on risk pathways
 - model input data
 - utilise ‘best’ data found, identify ‘real’ gaps & uncertainties
 - elicit expert opinions
 - data should be ‘best’ currently available
 - with time allowed to search all reasonable sources
 - still often incomplete and uncertain
 - checked by peer review

So the risk is…….

- The best currently available data gives….
 - *the best currently available estimate*
- Which is….
 - *the best the risk manager can ever have ‘now’!*
- Even if…
 - *it is still based on data gaps and uncertainties*
 - *which it will be!*
 - the ‘best’ data may still be poor data
 - allows targeted future data collection - may be lengthy
Stage 2: Conclusion….

- If a choice
 - Need to identify the best data available
 - What makes it the best data?
 - What do we do if we can't decide?
 - Multiple data sources for model!
- What do we do with crucial data gaps?
 - Often need expert opinion
 - How do we turn that into a number?

‘Did we get it right?’

- revisit assessment if/when new data available
 - targetted data collection
 - may be years away….
 - but allows quality to be specified
 - not just ‘best’ but ‘good’
 - will minimise uncertainty
 - should describe variability
What makes data ‘good’?

- Having said all that - some data is ‘good’!
- Two aspects
 - Intrinsic features of the data
 - universally essential for high quality
 - Applicability to current situation
 - data selection affects quality of the assessment and output
- General principles......

High quality data should be....

- Complete
 - for assessment in hand
 - required level of detail
- Relevant
 - e.g. right bug, country, management system, date etc. etc.
 - nothing irrelevant
- Succinct and transparent
- Fully referenced
- Presented in a logical sequence
High quality data should have….

- Full information on data source or provenance
 - Full reference if paper/similar
 - Name if *pers. comm.* or unpublished
 - Copy of web-page or other ephemeral source
 - Date of data collection/elicitation
 - Affiliation and/or funding source of provider

High quality data should have….

- A description of the level of uncertainty and the amount of variability
 - Uncertainty = lack of knowledge
 - Variability = real life situation

- Units
 - Where appropriate

- Raw numerical data
 - Where appropriate
High quality study data should have....

- Detailed information on study design: e.g.
 - Experimental or field based
 - Details of sample and sampling frame including:
 - livestock species (inc. scientific name)/product definition/population sub-group definition
 - source (country, region, producer, retailer, etc.)
 - sample selection method (esp for infection: clinical cases or random selection)
 - Population size
- Season of collection
- Portion description or size
- Method of sample collection

High quality microbiological data should have....

- Information on microbiological methods including:
 - Pathogen species, subspecies, strain
 - may include antibiotic resistance pattern
 - tests used, including any variation from published methods
 - sensitivity and specificity of tests
 - units used
 - precision of measurement
High quality numerical data should have....

- Results as raw data
 - Including:
 - Number tested
 - Results given for all samples tested
 - For pathogens, number of micro-organisms
 - Not just positive/negative.

A note on comparability....

- High quality data sets can easily be checked for comparability
 - As they contain sufficient detail
 - Are they describing or measuring the same thing?
 - Are the levels of uncertainty similar?

- Poor quality data sets are difficult to compare
 - Lack detail
 - May never know if describing or measuring same thing!
 - Or may be exactly same data!!
 - Difficult/unwise to combine!
and on homogeneity…..

- Homogeneity of input data aids comparability of model output
- Homogeneity achieved by, e.g.
 - Standardised methods
 - For sampling, testing etc.
 - Standard units
 - Standard definitions
 - For pathogen, host, product, portion size, etc.

Multiple data sources - why?

- No data specific to the problem - but several studies with some relevance
 - E.g. one old, one a different country etc
- Several studies directly relevant to the problem - all information needs inclusion
 - E.g. Regional prevalence studies available; need national
- Expert opinion - but a number of experts
 - And may need to combine with other data
Multiple data sources….how?

- model all separately
 - ‘what-if’ scenarios
 - several outputs
 - for data inputs and ‘model uncertainty’

- fit single distribution
 - point values

- weight alternatives
 - equally or differentially?
 - expert opinion on weights?
 - sample by weight distribution - single output
 - for data inputs and ‘model uncertainty’

Weighting example

- Overall aim:
 - To estimate probability that a random bird from GB broiler poultry flock will be campylobacter positive at point of slaughter

- Current need:
 - To estimate probability that a random flock is positive

- Data available:
 - Flock positive prevalence data from 4 separate studies

Probability flock is positive, P_{fp}, per data set

- Raw data used
- P_{fp} per data set
 - 'standard' method
 - Beta distribution
 - $r =$ positive flocks
 - $s =$ flocks sampled
 - $P_{fp} = \text{Beta}(r+1,s-r+1)$
 - for P1, P2, P4
 - describes uncertainty per data set

Data sets:
- 2 x poultry companies
- 1 x colleagues (published) epidemiological study
- 1 x another published study

Other data available:
- Market share by total bird numbers for studies 1,2,3

Assumption made:
- study 4 was 'rest of market'
- approximation

Weighting method:
- uses all available info
- better than 'equal weighting'
So - weights assigned….

- based on market share per study
 - $P_1 + P_2 = 35\%; \ w_1 + w_2 = 0.35$
 - combined here as confidential data
 - $P_3 = 50\%; \ w_3 = 0.50$
 - $P_4 = 15\%; \ w_4 = 0.15$

- probability random flock positive, P_{fp}

$$P_{fp} = (P_{1_{fp}} \ w_1) + (P_{2_{fp}} \ w_2) + (P_{3_{fp}} \ w_3) + (P_{4_{fp}} \ w_4)$$

So - when to combine?

- Depends on info needed
 - in example, for random GB flock
 - must combine
 - but - loses info

- Depends on info available
 - and assumptions on relevance/comparability
 - e.g: two studies 10 years old and 5 years old:
 - if prevalence studies - leave separate? Trend info? ‘What-if’ scenarios better?
 - if effects of heat on organism - will this have altered? Check method, detection efficacy, strain etc - but age of study per se not relevant

- Assessors judgement
Fitting distributions

- Could fill a book (has done!)
- Discrete or continuous?
 - Limited values 'v' any value (within the range); e.g.
 - number of chickens in flock - discrete (1,2,3... etc)
 - chicken bodyweight - continuous (within range min-max)
- Parametric or non-parametric?
 - Theoretically described 'v' directly from data; e.g.
 - incubation period - theoretically lognormal - parametric
 - percentage free-range flocks by region - direct from data
- Truncated or not?
 - For unbounded distributions - e.g. incubation period > lifespan?

Where do we start?

- Discrete or continuous?
 - Inspect the data
 - whole numbers = limited values = discrete
- Parametric or non-parametric?
 - Use parametric with care! - usually if:
 - theoretical basis known and appropriate
 - has proved to be accurate even if theory undemonstrated
 - parameters define distribution
 - non-parametric generally more useful/appropriate
- For biological process data
 - for selected distribution - biological plausibility (at least!)
 - gross error check.....
Distribution fitting example...

- **Aim:**
 - To estimate, for a random GB broiler flock at slaughter, its probable age

- **Data available:**
 - Age at slaughter, in weeks, for a large number of GB broiler flocks

 - Funded by, and work undertaken in, The Risk Research Department, The Veterinary Laboratories Agency, UK.

Sequence of steps: 1. Decisions....

- **Discrete or continuous?**
 - Inspect data...age given in whole weeks - but:
 - no reason why slaughter should be at specific weekly intervals
 - time is a *continuous* variable

- **Parametric or non-parametric?**
 - No theoretical basis
 - non-parametric more appropriate

- **Other considerations**
 - Slaughter for meat
 - shouldn’t be too young (too small) or too old (industry economics)
 - suggests bounded distribution
2. What does the distribution look like?

- Scatter plot drawn…..
- Suggests triangular ‘appearance’

![Scatter plot with triangular appearance](image)

3. Is this appropriate?

- Triangular distribution is..
 - continuous
 - non-parametric
 - bounded
- Sounds good so far!
 - 'checked' in BestFit (Palisade)
 - only AFTER logic considered
 - gave Triang as best fit
Comparison of Input Distribution and Triangular distribution

4. Check: Rank 1 using Kolmogorov-Smirnov test in BestFit

Conclusion.....

- Use Triang in model!
 - And it was....

Note: This was also an example of combining (point value) data from multiple sources by fitting a single distribution
Summary….

- **Acceptable data quality**
 - requires judgement

- **Multiple data sets - to combine or not?**
 - requires judgement

- **Distribution - the most appropriate?**
 - requires judgement

- **Risk assessment is art plus science**
 - assessor frequently uses judgement
 - and makes assumptions

- **Only safeguard: transparency!**